首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5527篇
  免费   473篇
  国内免费   7篇
  2024年   3篇
  2023年   45篇
  2022年   55篇
  2021年   252篇
  2020年   116篇
  2019年   155篇
  2018年   156篇
  2017年   143篇
  2016年   237篇
  2015年   394篇
  2014年   400篇
  2013年   394篇
  2012年   556篇
  2011年   535篇
  2010年   296篇
  2009年   258篇
  2008年   396篇
  2007年   279篇
  2006年   278篇
  2005年   249篇
  2004年   217篇
  2003年   196篇
  2002年   155篇
  2001年   12篇
  2000年   12篇
  1999年   18篇
  1998年   29篇
  1997年   18篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   7篇
  1989年   11篇
  1988年   5篇
  1987年   11篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1978年   3篇
  1976年   4篇
  1975年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1962年   5篇
  1957年   2篇
排序方式: 共有6007条查询结果,搜索用时 31 毫秒
71.
Measurement of static alignment of articulating joints is of clinical benefit and can be determined using image-based registration. We propose a method that could potentially improve the outcome of image-based registration by using initial manual registration. Magnetic resonance images of two wrist specimens were acquired in the relaxed position and during simulated grasp. Transformations were determined from voxel-based image registration between the two volumes. The volumes were manually aligned to match as closely as possible before auto-registration, from which standard transformations were obtained. Then, translation/rotation perturbations were applied to the manual registration to obtain altered initial positions, from which altered auto-registration transformations were obtained. Models of the radiolunate joint were also constructed from the images to simulate joint contact mechanics. We compared the sensitivity of transformations (translations and rotations) and contact mechanics to altering the initial registration condition from the defined standard. We observed that with increasing perturbation, transformation errors appeared to increase and values for contact force and contact area appeared to decrease. Based on these preliminary findings, it appears that the final registration outcome is sensitive to the initial registration.  相似文献   
72.
The vector of Chagas disease, Triatoma infestans, is largely controlled by the household application of pyrethroid insecticides. Because effective, large‐scale insecticide application is costly and necessitates numerous trained personnel, alternative control techniques are badly needed. We compared the residual effect of organophosphate‐based insecticidal paint (Inesfly 5A IGR? (I5A)) to standard deltamethrin, and a negative control, against T. infestans in a simulated natural environment. We evaluated mortality, knockdown, and ability to take a blood meal among 5th instar nymphs. I5A paint caused significantly greater mortality at time points up to nine months compared to deltamethrin (Fisher's Exact Test, p < 0.01 in all instances). A year following application, mortality among nymphs in the I5A was similar to those in the deltamethrin (χ2 = 0.76, df=1, p < 0.76). At months 0 and 1 after application, fewer nymphs exposed to deltamethrin took a blood meal compared to insects exposed to paint (Fisher's Exact Tests, p < 0.01 and p < 0.01, respectively). Insecticidal paint may provide an easily‐applied means of protection against vectors of Chagas disease.  相似文献   
73.
A microarray (LungCaGxE), based on Illumina BeadChip technology, was developed for high-resolution genotyping of genes that are candidates for involvement in environmentally driven aspects of lung cancer oncogenesis and/or tumor growth. The iterative array design process illustrates techniques for managing large panels of candidate genes and optimizing marker selection, aided by a new bioinformatics pipeline component, Tagger Batch Assistant. The LungCaGxE platform targets 298 genes and the proximal genetic regions in which they are located, using ∼13,000 DNA single nucleotide polymorphisms (SNPs), which include haplotype linkage markers with a minimum allele frequency of 1% and additional specifically targeted SNPs, for which published reports have indicated functional consequences or associations with lung cancer or other smoking-related diseases. The overall assay conversion rate was 98.9%; 99.0% of markers with a minimum Illumina design score of 0.6 successfully generated allele calls using genomic DNA from a study population of 1873 lung-cancer patients and controls.  相似文献   
74.
A series of flexible carbocyclic pyrimidine nucleosides has been designed and synthesized. In contrast to previously reported “fleximers” from our laboratory, these analogues have the connectivity of the heterocyclic base system “reversed”, where the pyrimidine ring is attached to the sugar moiety, rather than the five membered imidazole ring. As was previously seen with the ribose fleximers, their inherent flexibility should allow them to adjust to enzyme binding site mutations, as well as increase the affinity for atypical enzymes. Preliminary biological screening has revealed surprising inhibition of adenosine deaminase, despite their lack of resemblance to adenosine.  相似文献   
75.
76.
We report the use of neutron-encoded (NeuCode) stable isotope labeling of amino acids in cell culture for the purpose of C-terminal product ion annotation. Two NeuCode labeling isotopologues of lysine, 13C615N2 and 2H8, which differ by 36 mDa, were metabolically embedded in a sample proteome, and the resultant labeled proteins were combined, digested, and analyzed via liquid chromatography and mass spectrometry. With MS/MS scan resolving powers of ∼50,000 or higher, product ions containing the C terminus (i.e. lysine) appear as a doublet spaced by exactly 36 mDa, whereas N-terminal fragments exist as a single m/z peak. Through theory and experiment, we demonstrate that over 90% of all y-type product ions have detectable doublets. We report on an algorithm that can extract these neutron signatures with high sensitivity and specificity. In other words, of 15,503 y-type product ion peaks, the y-type ion identification algorithm correctly identified 14,552 (93.2%) based on detection of the NeuCode doublet; 6.8% were misclassified (i.e. other ion types that were assigned as y-type products). Searching NeuCode labeled yeast with PepNovo+ resulted in a 34% increase in correct de novo identifications relative to searching through MS/MS only. We use this tool to simplify spectra prior to database searching, to sort unmatched tandem mass spectra for spectral richness, for correlation of co-fragmented ions to their parent precursor, and for de novo sequence identification.The ability to make de novo sequence identifications directly from tandem mass spectra has long been a holy grail of the proteomic community. Such a capability would wean the field from its reliance upon sequenced genome databases. Even for organisms with fully annotated genomes, events such as single nucleotide polymorphisms, alternative splicing, gene fusion, and a host of other genomic transformations can result in altered proteomes. These alterations can vary from cell to cell and individual to individual. Thus, one could argue that the most valuable proteomic information, the individual and cellular proteome variation from the genome, remains elusive (1). This problem has received considerable attention; that said, it is not easy to de novo correlate spectrum to sequence in a large-scale, automated fashion (26). Improvements in mass accuracy have helped, but routine, reliable de novo sequencing without database assistance is not standard (710).A primary means to facilitate de novo spectral interpretation is the simple annotation of m/z peaks in tandem mass spectra as either N- or C-terminal. We and others have investigated this seemingly simple first step. Real-world spectra, however, are complex. Difficulties often arise in determining the charge state of the fragment or in differentiating between fragment ions and peaks arising from neutral loss, internal fragmentation, or spectral noise, both electronic and chemical. Several strategies have focused on product ion annotation. These approaches have included manipulation of the N-terminus basicity combined with electron transfer dissociation (ETD)1 (1113). This approach can yield mostly N-terminal fragments for peptides having only two charges. However, it requires both ETD and the protease LysN. Other methods have used differential labeling of N- and C-terminal peptides to shift either one or the other product ion series, by either metabolic or chemical means (1418). Metabolic incorporation of amino acids is an efficient method of introducing distinctive labels that eliminates in vitro labeling, but this method requires that the sample be amenable to cell culture (19, 20). Additionally, it may be difficult to achieve complete labeling in complex systems. Several other approaches used to introduce heavy isotopes onto one terminus have been investigated, including trypsin digestion in 18O water (2123), differential isotopic esterification (24, 25), derivatization of the C-terminal carboxylate by p-bromophenethylamine (8, 26), N-terminal derivatization with sulfonic acid groups (27, 28), and formaldehyde labeling via reductive amination (2931). These chemical modifications are introduced after cell lysis, often immediately prior to analysis. Although chemical labeling strategies can be used with a variety of samples, difficulties can arise from differences in labeling efficiency between samples, and often a clean-up step is required following labeling, which may lead to sample loss. No matter the labeling method, in this regime, the two precursors must be separately isolated, fragmented, and analyzed either together or separately. The recognition and selection of the broadly spaced doublet in real time also are necessary. These requirements have limited the utility of these approaches. Our own laboratory discovered that the c- and z-type product ions generated from either electron capture dissociation or ETD have distinct chemical formulae and therefore can always be distinguished based on accurate mass alone (32). The problem with this approach is that extremely high mass accuracy (<500 ppb) is required in order to distinguish these product ion types above ∼600 Da in mass. Thus, the majority of the product ions within a spectrum cannot be readily mapped to either terminus with high confidence.Despite these difficulties, we assert that robust de novo sequencing methodology would benefit greatly from a simple method that could be used to distinguish N- and C-terminal product ions with high accuracy and precision. Ideally, the approach would work regardless of the choice of proteolytic enzyme or dissociation method. Recently, we described a new technology for protein quantification called neutron encoding (NeuCode) (33). NeuCode embeds millidalton mass differences into peptides and proteins by exploiting the mass defect induced by differences in the nuclear binding energies of the various stable isotopes of common elements such as C, N, H, and O. For example, consider the amino acid lysine, which has eight additional neutrons (+8 Da). One way to synthesize this amino acid is to add six 13C atoms and two 15N atoms (+8.0142 Da). Another isotopologue could be constructed by adding eight 2H atoms (+8.0502). These two isotopologues differ by only 36 mDa; peptide precursors containing both of these amino acids would appear as a single, unresolved precursor m/z peak at a mass resolving power of less than ∼100,000. However, under high resolving powers (i.e. greater than ∼100,000 at m/z 400), this doublet is resolved. We first developed this NeuCode concept in the context of metabolic labeling, akin to stable isotope labeling with amino acids in cell culture (SILAC), except that instead of the precursor partners being separated by 4 to 8 Da, they are separated by only 6 to 40 mDa. For quantitative purposes, NeuCode promises to deliver ultraplexed SILAC (>12) without increasing spectral complexity.We reasoned that the isotopologues of Lys that permit NeuCode SILAC would generate a distinct fingerprint on C-terminal product ions. Specifically, peptides that have been labeled with NeuCode SILAC and digested with LysC uniformly contain Lys at the C terminus. Upon MS/MS, all C-terminal product ions should present as doublets (with duplex NeuCode), whereas N-terminal products will be detected as a single m/z peak. The very close m/z spacing of the NeuCode SILAC partners will ensure that each partner is always co-isolated and that the signatures are visible only upon high-resolving-power mass analysis. Here we investigate the combination of NeuCode SILAC and high-resolving-power MS/MS analysis to allow the straightforward identification of C-terminal product ions.

Sample Preparation

Saccharomyces cerevisiae strain BY4741 Lys1Δ was grown in defined synthetic complete (SC, Sunrise Science, San Diego, CA) drop-out media with either heavy 6C13/2N15 lysine (+8.0142 Da, Cambridge Isotopes, Tewksbury, MA), or heavy 8D (+8.0502 Da, Cambridge Isotopes). Cells were propagated to a minimum of 10 doublings. At mid-log phase, cells were harvested via centrifugation at 3,000 × g for 3 min and then washed three times with chilled double distilled H2O. Cell pellets were resuspended in 5 ml lysis buffer (50 mm Tris pH 8, 8 m urea, 75 mm sodium chloride, 100 mm sodium butyrate, 1 mm sodium orthovanadate, protease and phosphatase inhibitor tablet), and protein was extracted via glass bead milling (Retsch, Haan, Germany). Protein concentration was measured via BCA (Pierce). Cysteines in the yeast lysate were reduced with 5 m dithiothreitol at ambient temperature for 30 min, alkylated with 15 mm iodoacetamide in the dark at ambient temperature for 30 min, and then quenched with 5 mm dithiothreitol. 50 mm tris (pH 8.0) was used to dilute the urea concentration to 4 m. Proteins were digested with LysC (1:50 enzyme:protein ratio) at ambient temperature for 16 h. The digestion was quenched with TFA and desalted with a tC18 Sep-Pak (Waters, Etten-Leur, The Netherlands). Samples were prepared by mixing 6C13/2N15 (+8.0412 Da) and 8D (+8.0502 Da) labeled peptides in 1:1 ratios by mass. For strong cation exchange fractionation, peptides were dissolved in 400 μl of strong cation exchange buffer A (5 mm KH2PO4 and 30% acetonitrile; pH 2.65) and injected onto a polysulfoethylaspartamide column (9.4 mm × 200 mm; PolyLC) attached to a Surveyor LC quarternary pump (Thermo Electron, West Chester, PA) operating at 3 ml/min. Peptides were detected by photodiode array detector (Thermo Electron, West Chester, PA). Fractions were collected every 2 min starting at 10 min into the following gradient: 0–2 min at 100% buffer A, 2–5 min at 0%–15% buffer B (5 mm KH2PO4, 30% acetonitrile, and 350 mm KCl (pH 2.65)), and 5–35 min at 15%–100% buffer B. Buffer B was held at 100% for 10 min. Finally, the column was washed with buffer C (50 mm KH2PO4 and 500 mm KCl (pH 7.5)) and water before recalibration. Fractions were collected by hand every 2 to 3 min starting at 10 min into the gradient and were lyophilized and desalted with a tC18 Sep-Pak (Waters).

LC-MS/MS

Samples were loaded onto a 15-cm-long, 75-μm capillary column packed with 5 μm Magic C18 (Michrom, Auburn, CA) particles in mobile phase A (0.2% formic acid in water). Peptides were eluted with mobile phase B (0.2% formic acid in acetonitrile) over a 120-min gradient at a flow rate of 300 nl/min. Eluted peptides were analyzed by an Orbitrap Elite mass spectrometer. For the nonfractionated samples, mass spectrometer instrument methods comprised one MS1 scan followed by data-dependent MS2 scans of the five most intense precursors. A survey MS1 scan was performed by the Orbitrap at 30,000 resolving power to identify precursors to sample for tandem mass spectrometry, and this was followed by an additional MS1 scan at 480,000 resolving power (at m/z 400; actual mass resolving power of 470,700). Data-dependent tandem mass spectrometry was performed via beam-type collisional activated dissociation (HCD) in the Orbitrap at a resolving power of 15,000, 60,000, 120,000, or 240,000 and a collision energy of 30. Preview mode was enabled, and precursors of unknown charge or with a charge of +1 were excluded from MS2 sampling. For experiments comparing the duty cycle and resolving power required in order to distinguish y-ion doublets, MS1 and MS2 target ion accumulation values were set to 5 × 105 and 5 × 104, respectively. For all other experiments, MS1 target accumulation values were set to 1 × 106 and MS2 accumulation values were set to 4 × 105. Dynamic exclusion was set to 30 s for −0.55 m/z and +2.55 m/z of selected precursors. For ETD analysis, data-dependent top-five mass spectrometry was performed at a resolving power of 240,000 (m/z 400; actual MS2 mass resolving power of 271,000) (34). ETD accumulation values were set to 1 × 106 for MS1 target accumulation and 4 × 105 for MS2 target accumulation. The fluoranthene reaction time was set to 100 ms. For the high-pH strong cation exchange fractions, data-dependent tandem mass spectrometry was performed via HCD at a resolving power of either 60,000 or 120,000 and a collision energy of 30. Preview mode was enabled, and precursors of unknown charge or with a charge of +1 were excluded from MS2 sampling. MS1 targets were set to 1 × 106, and MS2 accumulation values were set to 4 × 105. Dynamic exclusion was set to 45 s for −0.55 m/z and +2.55 m/z of selected precursors. Analysis by use of a wide isolation window was performed on an Orbitrap Fusion. MS1 analysis was performed at 450,000 resolving power (m/z 200), and MS2 analysis was performed at 120,000 resolving power (m/z 400). Data-dependent top-N mass spectrometry was performed, with precursors selected from sequential 25-Da windows. HCD was performed twice on the same precursor, first by use of a quadrupole isolation width of 0.7 m/z for peptide identification, and then using 25 m/z quadrupole isolation. Fragment ions were analyzed in the Orbitrap at a mass resolving power of 120,000 (m/z 400). MS1 and MS2 target accumulation values were set to 2 × 105 and 5 × 104, respectively.

Data Analysis

Thermo.raw files were converted to searchable DTA text files using the Coon OMSSA Proteomic Analysis Software Suite (COMPASS) (35). DTA files containing exclusively y-ions were generated using an in-house algorithm. DTA files were searched against the UniProt yeast database (version 132) with Lys-C specificity using the Open Mass Spectrometry Search Algorithm (OMSSA), version 2.1.9 (36). Methionine oxidation was searched as a variable modification. Cysteine carbamidomethylation and the mass shift imparted by the lysine isotopolgues were searched as fixed modifications. For MS2 scans performed at a resolving power of 60,000, 120,000, or 240,000, a shift of +8.0142, representing the mass shift of the 13C615N2 isotopologue, was searched. For MS2 scans performed at 15,000 resolving power, the average shift of the 13C615N2 and 8H2 isotopologues (+8.0322) was searched. For all analyses, the precursor mass was obtained from the 480,000 MS scan. The precursor mass tolerance was defined as 50 ppm, and the fragment ion mass tolerance was set to 0.01 Da. A histogram of precursor mass error at different search tolerances is presented in supplemental Fig. S1. Using the COMPASS software suite, obtained search results were filtered to 1% FDR based on E-values. y-ion doublets were extracted from raw files using an in-house algorithm explained in the supplemental information. Briefly, an ensemble of three different machine learning models was used to score each MS/MS spectral peak for C-terminal product ion prediction. To train our ensemble learner to correctly distinguish C-terminal product ion peaks from N-terminal product ion peaks and noise peaks within our experimental MS/MS spectra, we generated a representative training set of spectral data. Instances used for training and test sets were peaks acquired only from MS/MS spectra associated with a peptide identification. Peaks with a signal-to-noise value of less than 5 were not used. Feature information for each training/testing instance was extracted from raw spectral data. Seven MS/MS spectral features were selected to generate training and test set data: (1) “has doublet” (evaluated as “true” only if a spectral peak could be found at the predicted m/z of the peak''s “heavy” partner), (2) “signal-to-noise” (discretized using a scale of 1–5 based on the peak''s signal-to-noise value), (3) “is isotope,” (4) “is neutral loss,” (5) “number of isotopes,” (6) “number of doublet isotopes,” and (7) “has neutral loss.”To evaluate NeuCode SILAC labeling for automated de novo sequencing, PepNovo+ (8) was benchmarked on y-ion predicted spectra. First, a set of identified spectra from 13,832 unique peptides (>7,400 per precursor charge 2–3) was produced to train PepNovo+ so it could learn features such as the relative peak height ranks of b/y-ions and the probability of noise at each mass interval. These training spectra were acquired under the 11 NeuCode yeast strong cation exchange fractions prepared as described above. Thermo raw files were converted into mzXML format using ProteoWizard v2.2.2828 (with peak-picking turned on) and identified by MS-GF+ v9358 (37) at a 1% spectrum-level FDR against the UniProt yeast database (plus isoforms), v20110729. A fixed modification of K+8.0142 was imposed along with variable modifications of oxidized Met and deamidated Asn/Gln. All MS/MS scans were searched with a 50-ppm precursor mass tolerance, the high-accuracy LTQ instrument setting, the HCD fragmentation setting, and one allowed missed Lys-C cleavage.Thermo.raw files were also converted into DTA spectra as before, except the in-house algorithm for selecting y-ion doublets was slightly altered to boost the peak height of predicted y-ions above that of other peaks (the cumulative peak height was equal to the sum of the monoisotopic doublet peaks, all isotopic doublet peaks, and two times the peak height of the base peak) and to convert their m/z to charge one. Remaining peaks not predicted to be y-ions were converted to charge one by a previously described MS/MS deconvolution tool (38). Deconvoluted DTA spectra that originated from identified MS/MS scans were then paired with the MSGF+ peptide IDs and passed to PepNovo+ for training. The resulting PepNovo+ scoring model lacked the rank-boosting component (39), which requires identified spectra from >100,000 unique peptides per precursor charge state and extensive modification of the PepNovo+ source code to train. Still, the model was sufficient to perform de novo peptide sequencing on the y-ion predicted spectra. PepNovo+ was also run on the raw MS/MS scans (mzXML spectra converted to MGF with all MS/MS peaks converted to charge one) by use of a previously trained HCD scoring model that also lacks the rank-boosting component (40). The following PepNovo+ parameters were set at all stages of training and benchmarking: fixed modification of K+8.0142; variable modifications of oxidized Met and deamidated Asn; 0.01-Da fragment mass tolerance; use of spectrum precursor charge; and use of spectrum precursor m/z.  相似文献   
77.
78.
Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.  相似文献   
79.
80.
Background aimsMesenchymal stromal cells (MSCs) have been extensively studied as a cellular therapeutic for various pathologic conditions. However, there remains a paucity of data regarding regional and systemic safety of MSC transplantations, particularly with multiple deliveries of allogeneic cells. The purpose of this study was to investigate the safety and systemic immunomodulatory effects of repeated local delivery of allogeneic MSCs into the region of the lacrimal gland, the gland of the third eyelid and the knee joint in dogs.MethodsAllogeneic adipose tissue-derived canine MSCs were delivered to the regions of the lacrimal gland and the third eyelid gland as well as in the knee joints of six healthy laboratory beagles as follows: six times with 1-week intervals for delivery to the lacrimal gland and the third eyelid gland regions and three to four times with 1- to 2-week intervals for intra-articular transplantations. Dogs were sequentially evaluated by clinical examination. At the conclusion of the study, dogs were humanely euthanized, and a complete gross and histopathologic examination of all organ systems was performed. Mixed leukocyte reactions were also performed before the first transplantation and after the final transplantation.ResultsClinical and pathologic examinations found no severe consequences after repeated MSC transplantations. Results of mixed leukocyte reactions demonstrated suppression of T-cell proliferation after MSC transplantations.ConclusionsThis is the first study to demonstrate regional and systemic safety and systemic immunomodulatory effects of repeated local delivery of allogeneic MSCs in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号