首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6535篇
  免费   609篇
  国内免费   7篇
  2023年   50篇
  2022年   104篇
  2021年   270篇
  2020年   126篇
  2019年   170篇
  2018年   167篇
  2017年   160篇
  2016年   253篇
  2015年   420篇
  2014年   435篇
  2013年   428篇
  2012年   621篇
  2011年   592篇
  2010年   327篇
  2009年   293篇
  2008年   452篇
  2007年   333篇
  2006年   324篇
  2005年   282篇
  2004年   251篇
  2003年   239篇
  2002年   194篇
  2001年   43篇
  2000年   50篇
  1999年   39篇
  1998年   45篇
  1997年   20篇
  1996年   24篇
  1995年   13篇
  1994年   10篇
  1993年   20篇
  1992年   33篇
  1991年   28篇
  1990年   25篇
  1989年   28篇
  1988年   20篇
  1987年   26篇
  1986年   17篇
  1985年   19篇
  1984年   12篇
  1983年   19篇
  1980年   9篇
  1979年   14篇
  1978年   12篇
  1977年   13篇
  1976年   9篇
  1975年   12篇
  1973年   11篇
  1972年   11篇
  1970年   11篇
排序方式: 共有7151条查询结果,搜索用时 31 毫秒
101.
Nesting birds must provide a thermal environment sufficient for egg development while also meeting self‐maintenance needs. Many birds, particularly those with uniparental incubation, achieve this balance through periodic incubation recesses, during which foraging and other self‐maintenance activities can occur. However, incubating birds may experience disturbances such as predator or human activity which interrupt natural incubation patterns by compelling them to leave the nest. We characterized incubating mallard Anas platyrhynchos and gadwall Mareca strepera hens’ responses when flushed by predators and investigators in Suisun Marsh, California, USA. Diurnal incubation recesses initiated by investigators approaching nests were 63% longer than natural diurnal incubation recesses initiated by the hen (geometric mean: 226.77 min versus 142.04 min). Nocturnal incubation recesses, many of which were likely the result of predators flushing hens, were of similar duration regardless of whether the nest was partially depredated during the event (115.33 [101.01;131.68] minutes) or not (119.62 [111.96;127.82] minutes), yet were 16% shorter than natural diurnal incubation recesses. Hens moved further from the nest during natural diurnal recesses or investigator‐initiated recesses than during nocturnal recesses, and the proportion of hen locations recorded in wetland versus upland habitat during recesses varied with recess type (model‐predicted means: natural diurnal recess 0.77; investigator‐initiated recess 0.82; nocturnal recess 0.31). Hens were more likely to take a natural recess following an investigator‐initiated recess earlier that same day than following a natural recess earlier that same day, and natural recesses that followed an investigator‐initiated recess were longer than natural recesses that followed an earlier natural recess, suggesting that hens may not fulfill all of their physiological needs during investigator‐initiated recesses. We found no evidence that the duration of investigator‐initiated recesses was influenced by repeated visits to the nest, whether by predators or by investigators, and trapping and handling the hen did not affect investigator‐initiated recess duration unless the hen was also fitted with a backpack‐harness style GPS–GSM transmitter at the time of capture. Hens that were captured and fitted with GPS–GSM transmitters took recesses that were 26% longer than recesses during which a hen was captured but a GPS–GSM transmitter was not attached. Incubation interruptions had measurable but limited and specific effects on hen behavior.  相似文献   
102.
Measurement of static alignment of articulating joints is of clinical benefit and can be determined using image-based registration. We propose a method that could potentially improve the outcome of image-based registration by using initial manual registration. Magnetic resonance images of two wrist specimens were acquired in the relaxed position and during simulated grasp. Transformations were determined from voxel-based image registration between the two volumes. The volumes were manually aligned to match as closely as possible before auto-registration, from which standard transformations were obtained. Then, translation/rotation perturbations were applied to the manual registration to obtain altered initial positions, from which altered auto-registration transformations were obtained. Models of the radiolunate joint were also constructed from the images to simulate joint contact mechanics. We compared the sensitivity of transformations (translations and rotations) and contact mechanics to altering the initial registration condition from the defined standard. We observed that with increasing perturbation, transformation errors appeared to increase and values for contact force and contact area appeared to decrease. Based on these preliminary findings, it appears that the final registration outcome is sensitive to the initial registration.  相似文献   
103.
The vector of Chagas disease, Triatoma infestans, is largely controlled by the household application of pyrethroid insecticides. Because effective, large‐scale insecticide application is costly and necessitates numerous trained personnel, alternative control techniques are badly needed. We compared the residual effect of organophosphate‐based insecticidal paint (Inesfly 5A IGR? (I5A)) to standard deltamethrin, and a negative control, against T. infestans in a simulated natural environment. We evaluated mortality, knockdown, and ability to take a blood meal among 5th instar nymphs. I5A paint caused significantly greater mortality at time points up to nine months compared to deltamethrin (Fisher's Exact Test, p < 0.01 in all instances). A year following application, mortality among nymphs in the I5A was similar to those in the deltamethrin (χ2 = 0.76, df=1, p < 0.76). At months 0 and 1 after application, fewer nymphs exposed to deltamethrin took a blood meal compared to insects exposed to paint (Fisher's Exact Tests, p < 0.01 and p < 0.01, respectively). Insecticidal paint may provide an easily‐applied means of protection against vectors of Chagas disease.  相似文献   
104.
A microarray (LungCaGxE), based on Illumina BeadChip technology, was developed for high-resolution genotyping of genes that are candidates for involvement in environmentally driven aspects of lung cancer oncogenesis and/or tumor growth. The iterative array design process illustrates techniques for managing large panels of candidate genes and optimizing marker selection, aided by a new bioinformatics pipeline component, Tagger Batch Assistant. The LungCaGxE platform targets 298 genes and the proximal genetic regions in which they are located, using ∼13,000 DNA single nucleotide polymorphisms (SNPs), which include haplotype linkage markers with a minimum allele frequency of 1% and additional specifically targeted SNPs, for which published reports have indicated functional consequences or associations with lung cancer or other smoking-related diseases. The overall assay conversion rate was 98.9%; 99.0% of markers with a minimum Illumina design score of 0.6 successfully generated allele calls using genomic DNA from a study population of 1873 lung-cancer patients and controls.  相似文献   
105.
A series of flexible carbocyclic pyrimidine nucleosides has been designed and synthesized. In contrast to previously reported “fleximers” from our laboratory, these analogues have the connectivity of the heterocyclic base system “reversed”, where the pyrimidine ring is attached to the sugar moiety, rather than the five membered imidazole ring. As was previously seen with the ribose fleximers, their inherent flexibility should allow them to adjust to enzyme binding site mutations, as well as increase the affinity for atypical enzymes. Preliminary biological screening has revealed surprising inhibition of adenosine deaminase, despite their lack of resemblance to adenosine.  相似文献   
106.
107.
We report the use of neutron-encoded (NeuCode) stable isotope labeling of amino acids in cell culture for the purpose of C-terminal product ion annotation. Two NeuCode labeling isotopologues of lysine, 13C615N2 and 2H8, which differ by 36 mDa, were metabolically embedded in a sample proteome, and the resultant labeled proteins were combined, digested, and analyzed via liquid chromatography and mass spectrometry. With MS/MS scan resolving powers of ∼50,000 or higher, product ions containing the C terminus (i.e. lysine) appear as a doublet spaced by exactly 36 mDa, whereas N-terminal fragments exist as a single m/z peak. Through theory and experiment, we demonstrate that over 90% of all y-type product ions have detectable doublets. We report on an algorithm that can extract these neutron signatures with high sensitivity and specificity. In other words, of 15,503 y-type product ion peaks, the y-type ion identification algorithm correctly identified 14,552 (93.2%) based on detection of the NeuCode doublet; 6.8% were misclassified (i.e. other ion types that were assigned as y-type products). Searching NeuCode labeled yeast with PepNovo+ resulted in a 34% increase in correct de novo identifications relative to searching through MS/MS only. We use this tool to simplify spectra prior to database searching, to sort unmatched tandem mass spectra for spectral richness, for correlation of co-fragmented ions to their parent precursor, and for de novo sequence identification.The ability to make de novo sequence identifications directly from tandem mass spectra has long been a holy grail of the proteomic community. Such a capability would wean the field from its reliance upon sequenced genome databases. Even for organisms with fully annotated genomes, events such as single nucleotide polymorphisms, alternative splicing, gene fusion, and a host of other genomic transformations can result in altered proteomes. These alterations can vary from cell to cell and individual to individual. Thus, one could argue that the most valuable proteomic information, the individual and cellular proteome variation from the genome, remains elusive (1). This problem has received considerable attention; that said, it is not easy to de novo correlate spectrum to sequence in a large-scale, automated fashion (26). Improvements in mass accuracy have helped, but routine, reliable de novo sequencing without database assistance is not standard (710).A primary means to facilitate de novo spectral interpretation is the simple annotation of m/z peaks in tandem mass spectra as either N- or C-terminal. We and others have investigated this seemingly simple first step. Real-world spectra, however, are complex. Difficulties often arise in determining the charge state of the fragment or in differentiating between fragment ions and peaks arising from neutral loss, internal fragmentation, or spectral noise, both electronic and chemical. Several strategies have focused on product ion annotation. These approaches have included manipulation of the N-terminus basicity combined with electron transfer dissociation (ETD)1 (1113). This approach can yield mostly N-terminal fragments for peptides having only two charges. However, it requires both ETD and the protease LysN. Other methods have used differential labeling of N- and C-terminal peptides to shift either one or the other product ion series, by either metabolic or chemical means (1418). Metabolic incorporation of amino acids is an efficient method of introducing distinctive labels that eliminates in vitro labeling, but this method requires that the sample be amenable to cell culture (19, 20). Additionally, it may be difficult to achieve complete labeling in complex systems. Several other approaches used to introduce heavy isotopes onto one terminus have been investigated, including trypsin digestion in 18O water (2123), differential isotopic esterification (24, 25), derivatization of the C-terminal carboxylate by p-bromophenethylamine (8, 26), N-terminal derivatization with sulfonic acid groups (27, 28), and formaldehyde labeling via reductive amination (2931). These chemical modifications are introduced after cell lysis, often immediately prior to analysis. Although chemical labeling strategies can be used with a variety of samples, difficulties can arise from differences in labeling efficiency between samples, and often a clean-up step is required following labeling, which may lead to sample loss. No matter the labeling method, in this regime, the two precursors must be separately isolated, fragmented, and analyzed either together or separately. The recognition and selection of the broadly spaced doublet in real time also are necessary. These requirements have limited the utility of these approaches. Our own laboratory discovered that the c- and z-type product ions generated from either electron capture dissociation or ETD have distinct chemical formulae and therefore can always be distinguished based on accurate mass alone (32). The problem with this approach is that extremely high mass accuracy (<500 ppb) is required in order to distinguish these product ion types above ∼600 Da in mass. Thus, the majority of the product ions within a spectrum cannot be readily mapped to either terminus with high confidence.Despite these difficulties, we assert that robust de novo sequencing methodology would benefit greatly from a simple method that could be used to distinguish N- and C-terminal product ions with high accuracy and precision. Ideally, the approach would work regardless of the choice of proteolytic enzyme or dissociation method. Recently, we described a new technology for protein quantification called neutron encoding (NeuCode) (33). NeuCode embeds millidalton mass differences into peptides and proteins by exploiting the mass defect induced by differences in the nuclear binding energies of the various stable isotopes of common elements such as C, N, H, and O. For example, consider the amino acid lysine, which has eight additional neutrons (+8 Da). One way to synthesize this amino acid is to add six 13C atoms and two 15N atoms (+8.0142 Da). Another isotopologue could be constructed by adding eight 2H atoms (+8.0502). These two isotopologues differ by only 36 mDa; peptide precursors containing both of these amino acids would appear as a single, unresolved precursor m/z peak at a mass resolving power of less than ∼100,000. However, under high resolving powers (i.e. greater than ∼100,000 at m/z 400), this doublet is resolved. We first developed this NeuCode concept in the context of metabolic labeling, akin to stable isotope labeling with amino acids in cell culture (SILAC), except that instead of the precursor partners being separated by 4 to 8 Da, they are separated by only 6 to 40 mDa. For quantitative purposes, NeuCode promises to deliver ultraplexed SILAC (>12) without increasing spectral complexity.We reasoned that the isotopologues of Lys that permit NeuCode SILAC would generate a distinct fingerprint on C-terminal product ions. Specifically, peptides that have been labeled with NeuCode SILAC and digested with LysC uniformly contain Lys at the C terminus. Upon MS/MS, all C-terminal product ions should present as doublets (with duplex NeuCode), whereas N-terminal products will be detected as a single m/z peak. The very close m/z spacing of the NeuCode SILAC partners will ensure that each partner is always co-isolated and that the signatures are visible only upon high-resolving-power mass analysis. Here we investigate the combination of NeuCode SILAC and high-resolving-power MS/MS analysis to allow the straightforward identification of C-terminal product ions.

Sample Preparation

Saccharomyces cerevisiae strain BY4741 Lys1Δ was grown in defined synthetic complete (SC, Sunrise Science, San Diego, CA) drop-out media with either heavy 6C13/2N15 lysine (+8.0142 Da, Cambridge Isotopes, Tewksbury, MA), or heavy 8D (+8.0502 Da, Cambridge Isotopes). Cells were propagated to a minimum of 10 doublings. At mid-log phase, cells were harvested via centrifugation at 3,000 × g for 3 min and then washed three times with chilled double distilled H2O. Cell pellets were resuspended in 5 ml lysis buffer (50 mm Tris pH 8, 8 m urea, 75 mm sodium chloride, 100 mm sodium butyrate, 1 mm sodium orthovanadate, protease and phosphatase inhibitor tablet), and protein was extracted via glass bead milling (Retsch, Haan, Germany). Protein concentration was measured via BCA (Pierce). Cysteines in the yeast lysate were reduced with 5 m dithiothreitol at ambient temperature for 30 min, alkylated with 15 mm iodoacetamide in the dark at ambient temperature for 30 min, and then quenched with 5 mm dithiothreitol. 50 mm tris (pH 8.0) was used to dilute the urea concentration to 4 m. Proteins were digested with LysC (1:50 enzyme:protein ratio) at ambient temperature for 16 h. The digestion was quenched with TFA and desalted with a tC18 Sep-Pak (Waters, Etten-Leur, The Netherlands). Samples were prepared by mixing 6C13/2N15 (+8.0412 Da) and 8D (+8.0502 Da) labeled peptides in 1:1 ratios by mass. For strong cation exchange fractionation, peptides were dissolved in 400 μl of strong cation exchange buffer A (5 mm KH2PO4 and 30% acetonitrile; pH 2.65) and injected onto a polysulfoethylaspartamide column (9.4 mm × 200 mm; PolyLC) attached to a Surveyor LC quarternary pump (Thermo Electron, West Chester, PA) operating at 3 ml/min. Peptides were detected by photodiode array detector (Thermo Electron, West Chester, PA). Fractions were collected every 2 min starting at 10 min into the following gradient: 0–2 min at 100% buffer A, 2–5 min at 0%–15% buffer B (5 mm KH2PO4, 30% acetonitrile, and 350 mm KCl (pH 2.65)), and 5–35 min at 15%–100% buffer B. Buffer B was held at 100% for 10 min. Finally, the column was washed with buffer C (50 mm KH2PO4 and 500 mm KCl (pH 7.5)) and water before recalibration. Fractions were collected by hand every 2 to 3 min starting at 10 min into the gradient and were lyophilized and desalted with a tC18 Sep-Pak (Waters).

LC-MS/MS

Samples were loaded onto a 15-cm-long, 75-μm capillary column packed with 5 μm Magic C18 (Michrom, Auburn, CA) particles in mobile phase A (0.2% formic acid in water). Peptides were eluted with mobile phase B (0.2% formic acid in acetonitrile) over a 120-min gradient at a flow rate of 300 nl/min. Eluted peptides were analyzed by an Orbitrap Elite mass spectrometer. For the nonfractionated samples, mass spectrometer instrument methods comprised one MS1 scan followed by data-dependent MS2 scans of the five most intense precursors. A survey MS1 scan was performed by the Orbitrap at 30,000 resolving power to identify precursors to sample for tandem mass spectrometry, and this was followed by an additional MS1 scan at 480,000 resolving power (at m/z 400; actual mass resolving power of 470,700). Data-dependent tandem mass spectrometry was performed via beam-type collisional activated dissociation (HCD) in the Orbitrap at a resolving power of 15,000, 60,000, 120,000, or 240,000 and a collision energy of 30. Preview mode was enabled, and precursors of unknown charge or with a charge of +1 were excluded from MS2 sampling. For experiments comparing the duty cycle and resolving power required in order to distinguish y-ion doublets, MS1 and MS2 target ion accumulation values were set to 5 × 105 and 5 × 104, respectively. For all other experiments, MS1 target accumulation values were set to 1 × 106 and MS2 accumulation values were set to 4 × 105. Dynamic exclusion was set to 30 s for −0.55 m/z and +2.55 m/z of selected precursors. For ETD analysis, data-dependent top-five mass spectrometry was performed at a resolving power of 240,000 (m/z 400; actual MS2 mass resolving power of 271,000) (34). ETD accumulation values were set to 1 × 106 for MS1 target accumulation and 4 × 105 for MS2 target accumulation. The fluoranthene reaction time was set to 100 ms. For the high-pH strong cation exchange fractions, data-dependent tandem mass spectrometry was performed via HCD at a resolving power of either 60,000 or 120,000 and a collision energy of 30. Preview mode was enabled, and precursors of unknown charge or with a charge of +1 were excluded from MS2 sampling. MS1 targets were set to 1 × 106, and MS2 accumulation values were set to 4 × 105. Dynamic exclusion was set to 45 s for −0.55 m/z and +2.55 m/z of selected precursors. Analysis by use of a wide isolation window was performed on an Orbitrap Fusion. MS1 analysis was performed at 450,000 resolving power (m/z 200), and MS2 analysis was performed at 120,000 resolving power (m/z 400). Data-dependent top-N mass spectrometry was performed, with precursors selected from sequential 25-Da windows. HCD was performed twice on the same precursor, first by use of a quadrupole isolation width of 0.7 m/z for peptide identification, and then using 25 m/z quadrupole isolation. Fragment ions were analyzed in the Orbitrap at a mass resolving power of 120,000 (m/z 400). MS1 and MS2 target accumulation values were set to 2 × 105 and 5 × 104, respectively.

Data Analysis

Thermo.raw files were converted to searchable DTA text files using the Coon OMSSA Proteomic Analysis Software Suite (COMPASS) (35). DTA files containing exclusively y-ions were generated using an in-house algorithm. DTA files were searched against the UniProt yeast database (version 132) with Lys-C specificity using the Open Mass Spectrometry Search Algorithm (OMSSA), version 2.1.9 (36). Methionine oxidation was searched as a variable modification. Cysteine carbamidomethylation and the mass shift imparted by the lysine isotopolgues were searched as fixed modifications. For MS2 scans performed at a resolving power of 60,000, 120,000, or 240,000, a shift of +8.0142, representing the mass shift of the 13C615N2 isotopologue, was searched. For MS2 scans performed at 15,000 resolving power, the average shift of the 13C615N2 and 8H2 isotopologues (+8.0322) was searched. For all analyses, the precursor mass was obtained from the 480,000 MS scan. The precursor mass tolerance was defined as 50 ppm, and the fragment ion mass tolerance was set to 0.01 Da. A histogram of precursor mass error at different search tolerances is presented in supplemental Fig. S1. Using the COMPASS software suite, obtained search results were filtered to 1% FDR based on E-values. y-ion doublets were extracted from raw files using an in-house algorithm explained in the supplemental information. Briefly, an ensemble of three different machine learning models was used to score each MS/MS spectral peak for C-terminal product ion prediction. To train our ensemble learner to correctly distinguish C-terminal product ion peaks from N-terminal product ion peaks and noise peaks within our experimental MS/MS spectra, we generated a representative training set of spectral data. Instances used for training and test sets were peaks acquired only from MS/MS spectra associated with a peptide identification. Peaks with a signal-to-noise value of less than 5 were not used. Feature information for each training/testing instance was extracted from raw spectral data. Seven MS/MS spectral features were selected to generate training and test set data: (1) “has doublet” (evaluated as “true” only if a spectral peak could be found at the predicted m/z of the peak''s “heavy” partner), (2) “signal-to-noise” (discretized using a scale of 1–5 based on the peak''s signal-to-noise value), (3) “is isotope,” (4) “is neutral loss,” (5) “number of isotopes,” (6) “number of doublet isotopes,” and (7) “has neutral loss.”To evaluate NeuCode SILAC labeling for automated de novo sequencing, PepNovo+ (8) was benchmarked on y-ion predicted spectra. First, a set of identified spectra from 13,832 unique peptides (>7,400 per precursor charge 2–3) was produced to train PepNovo+ so it could learn features such as the relative peak height ranks of b/y-ions and the probability of noise at each mass interval. These training spectra were acquired under the 11 NeuCode yeast strong cation exchange fractions prepared as described above. Thermo raw files were converted into mzXML format using ProteoWizard v2.2.2828 (with peak-picking turned on) and identified by MS-GF+ v9358 (37) at a 1% spectrum-level FDR against the UniProt yeast database (plus isoforms), v20110729. A fixed modification of K+8.0142 was imposed along with variable modifications of oxidized Met and deamidated Asn/Gln. All MS/MS scans were searched with a 50-ppm precursor mass tolerance, the high-accuracy LTQ instrument setting, the HCD fragmentation setting, and one allowed missed Lys-C cleavage.Thermo.raw files were also converted into DTA spectra as before, except the in-house algorithm for selecting y-ion doublets was slightly altered to boost the peak height of predicted y-ions above that of other peaks (the cumulative peak height was equal to the sum of the monoisotopic doublet peaks, all isotopic doublet peaks, and two times the peak height of the base peak) and to convert their m/z to charge one. Remaining peaks not predicted to be y-ions were converted to charge one by a previously described MS/MS deconvolution tool (38). Deconvoluted DTA spectra that originated from identified MS/MS scans were then paired with the MSGF+ peptide IDs and passed to PepNovo+ for training. The resulting PepNovo+ scoring model lacked the rank-boosting component (39), which requires identified spectra from >100,000 unique peptides per precursor charge state and extensive modification of the PepNovo+ source code to train. Still, the model was sufficient to perform de novo peptide sequencing on the y-ion predicted spectra. PepNovo+ was also run on the raw MS/MS scans (mzXML spectra converted to MGF with all MS/MS peaks converted to charge one) by use of a previously trained HCD scoring model that also lacks the rank-boosting component (40). The following PepNovo+ parameters were set at all stages of training and benchmarking: fixed modification of K+8.0142; variable modifications of oxidized Met and deamidated Asn; 0.01-Da fragment mass tolerance; use of spectrum precursor charge; and use of spectrum precursor m/z.  相似文献   
108.
109.
Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.  相似文献   
110.
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process‐based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS‐TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water‐table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号