首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11403篇
  免费   896篇
  国内免费   12篇
  2024年   15篇
  2023年   74篇
  2022年   200篇
  2021年   379篇
  2020年   216篇
  2019年   272篇
  2018年   358篇
  2017年   303篇
  2016年   489篇
  2015年   787篇
  2014年   793篇
  2013年   832篇
  2012年   1122篇
  2011年   1039篇
  2010年   597篇
  2009年   528篇
  2008年   765篇
  2007年   652篇
  2006年   574篇
  2005年   508篇
  2004年   464篇
  2003年   425篇
  2002年   318篇
  2001年   106篇
  2000年   92篇
  1999年   86篇
  1998年   56篇
  1997年   42篇
  1996年   26篇
  1995年   22篇
  1994年   13篇
  1993年   14篇
  1992年   17篇
  1991年   12篇
  1990年   11篇
  1989年   14篇
  1988年   8篇
  1987年   12篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1976年   6篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1962年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
953.
954.
Human Vibrio infections associated with consumption of raw shellfish greatly impact the seafood industry. Vibrio cholerae-related disease is occasionally attributed to seafood, but V. vulnificus and V. parahaemolyticus are the primary targets of postharvest processing (PHP) efforts in the United States, as they pose the greatest threat to the industry. Most successful PHP treatments for Vibrio reduction also kill the molluscs and are not suitable for the lucrative half-shell market, while nonlethal practices are generally less effective. Therefore, novel intervention strategies for Vibrio reduction are needed for live oyster products. Chitosan is a bioactive derivative of chitin that is generally recognized as safe as a food additive by the FDA, and chitosan microparticles (CMs) were investigated in the present study as a potential PHP treatment for live oyster applications. Treatment of broth cultures with 0.5% (wt/vol) CMs resulted in growth cessation of V. cholerae, V. vulnificus, and V. parahaemolyticus, reducing culturable levels to nondetectable amounts after 3 h in three independent experiments. Furthermore, a similar treatment in artificial seawater at 4, 25, and 37°C reduced V. vulnificus levels by ca. 7 log CFU/ml after 24 h of exposure, but 48 h of exposure and elevated temperature were required to achieve similar results for V. parahaemolyticus and V. cholerae. Live oysters that either were artificially inoculated or contained natural populations of V. vulnificus and V. parahaemolyticus showed significant and consistent reductions following CM treatment (5%) compared to the amounts in the untreated controls. Thus, the results strongly support the promising potential for the application of CMs as a PHP treatment to reduce Vibrio spp. in intact live oysters.  相似文献   
955.
956.
Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors.  相似文献   
957.
Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY‐deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy‐induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy‐induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.  相似文献   
958.
The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi‐isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non‐typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.  相似文献   
959.
960.
Many bacterial pathogens are becoming increasingly resistant to antibiotic treatments, and a detailed understanding of the molecular basis of antibiotic resistance is critical for the development of next‐generation approaches for combating bacterial infections. Studies focusing on pathogens have revealed the profile of resistance in these organisms to be due primarily to the presence of multidrug resistance efflux pumps: tripartite protein complexes which span the periplasm bridging the inner and outer membranes of Gram‐negative bacteria. An atomic‐level resolution tripartite structure remains imperative to advancing our understanding of the molecular mechanisms of pump function using both theoretical and experimental approaches. We develop a fast and consistent method for constructing tripartite structures which leverages existing data‐driven models and provide molecular modeling approaches for constructing tripartite structures of multidrug resistance efflux pumps. Our modeling studies reveal that conformational changes in the inner membrane component responsible for drug translocation have limited impact on the conformations of the other pump components, and that two distinct models derived from conflicting experimental data are both consistent with all currently available measurements. Additionally, we investigate putative drug translocation pathways via geometric simulations based on the available crystal structures of the inner membrane pump component, AcrB, bound to two drugs which occupy distinct binding sites: doxorubicin and linezolid. These simulations suggest that smaller drugs may enter the pump through a channel from the cytoplasmic leaflet of the inner membrane, while both smaller and larger drug molecules may enter through a vestibule accessible from the periplasm. Proteins 2015; 83:46–65. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号