首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   130篇
  2023年   7篇
  2022年   9篇
  2021年   25篇
  2020年   13篇
  2019年   17篇
  2018年   23篇
  2017年   26篇
  2016年   28篇
  2015年   57篇
  2014年   49篇
  2013年   48篇
  2012年   68篇
  2011年   63篇
  2010年   45篇
  2009年   32篇
  2008年   64篇
  2007年   46篇
  2006年   41篇
  2005年   49篇
  2004年   34篇
  2003年   33篇
  2002年   41篇
  2001年   18篇
  2000年   8篇
  1999年   11篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1992年   7篇
  1991年   12篇
  1990年   7篇
  1989年   7篇
  1988年   14篇
  1987年   11篇
  1986年   12篇
  1985年   12篇
  1984年   6篇
  1983年   9篇
  1982年   8篇
  1980年   4篇
  1978年   6篇
  1976年   4篇
  1975年   6篇
  1974年   7篇
  1972年   9篇
  1971年   3篇
  1970年   6篇
  1968年   3篇
  1967年   3篇
  1966年   4篇
排序方式: 共有1057条查询结果,搜索用时 15 毫秒
121.
The purpose was to assess whether body cooling between 2 bouts of exercise in the heat enhances performance during the second exercise session. Using a random, crossover design, 15 subjects (3 women, 12 men; 28 +/- 2 years, 180 +/- 2 cm, 69 +/- 2.3 kg) participated in all 3 trials. Subjects ran 90 minutes on hilly trails in a hot environment (approximately 27 degrees C) before 12 minutes of either cold water immersion (CWI; 13.98 degrees C), ice water immersion (IWI; 5.23 degrees C), or a mock treatment (MT) of sitting in a tub with no water (29.50 degrees C). After immersion, subjects ran a 2-mile race. CWI had faster (p < 0.05) performance time (725 seconds) than MT (769 seconds). CWI and IWI had significantly (p < 0.05) lower rectal temperatures postimmersion than MT as well as postrace (p < 0.05). Heart rate also remained significantly lower (p < 0.05) during the CWI and IWI trials for the first half of the race. In conclusion, CWI enhances performance (6% improvement in race time) in the second bout of exercise, supporting its potential role as an ergogenic aid in athletic performance.  相似文献   
122.
Microarray technology was used to characterize and compare hexachlorocyclohexane (HCH) contaminated soils from Spain. A library of 2,290 hypervariable 16S rRNA gene sequences was prepared with serial analysis of ribosomal sequence tags (SARST) from a composite of contaminated and uncontaminated soils. By designing hybridization probes specific to the 100 most abundant ribosomal sequence tags (RSTs) in the composite library, the RST array was designed to be habitat-specific and predicted to monitor the most abundant polymerase chain reaction (PCR)-amplified phylotypes in the individual samples. The sensitivity and specificity of the RST array was tested with a series of pure culture-specific probes and hybridized with labelled soil PCR products to generate hybridization patterns for each soil. Sequencing of prominent bands in denaturing gradient gel electrophoresis (DGGE) fingerprints derived from these soils provided a means by which we successfully confirmed the habitat-specific array design and validated the bulk of the probe signals. Non-metric multidimensional scaling revealed correlations between probe signals and soil physicochemical parameters. Among the strongest correlations to total HCH contamination were probe signals corresponding to unknown Gamma Proteobacteria, potential pollutant-degrading phylotypes, and several organisms with acid-tolerant phenotypes. The strongest correlations to alpha-HCH were probe signals corresponding to the genus Sphingomonas, which contains known HCH degraders. This suggests that the population detected was enriched in situ by HCH contamination and may play a role in HCH degradation. Other environmental parameters were also likely instrumental in shaping community composition in these soils. The results highlight the power of habitat-specific microarrays for comparing complex microbial communities.  相似文献   
123.

Background  

The use of highly reproducible and spatiallyhomogeneous thin film matrices permits automated microscopy and quantitative determination of the response of hundreds of cells in a population. Using thin films of extracellular matrix proteins, we have quantified, on a cell-by-cell basis, phenotypic parameters of cells on different extracellular matrices. We have quantitatively examined the relationship between fibroblast morphology and activation of the promoter for the extracellular matrix protein tenascin-C using a tenascin-C promoter-based GFP reporter construct.  相似文献   
124.
Several silicone oils have been assessed and compared as an internal source of oxygen in connection to their use as binders for carbon-paste glucose biosensors. All four poly(dimethylsiloxane) (PDMS) oils tested a dramatic increase in the oxygen capacity of carbon-paste enzyme electrodes to allow convenient biosensing under severe oxygen-deficit conditions. The resulting oxygen independence is better than that exerted by perfluorocarbon binders or that displayed by mediator-based bioelectrodes. The resistance to oxygen effects is indicated from the identical response (observed in the presence and absence of oxygen) up to 2 x 10(-2) M glucose and the slight (12%) sensitivity loss at 4 x 10(-2) M. The influence of the viscosity of the PDMS binder upon the internal oxygen supply is examined. The PDMS carbon-paste enzyme electrode displays a stable glucose response over prolonged (15 h) operation in an oxygen-free solution. On-line continuous testing indicates favorable dynamic properties with no carry-over effects over the physiological and pathophysiological range (3-12 mM glucose).  相似文献   
125.
The exact role of arousal in central and peripheral hemodynamic responses to passive limb movement in humans is unclear but has been proposed as a potential contributor. Thus, we used a human model with no lower limb afferent feedback to determine the role of arousal on the hemodynamic response to passive leg movement. In nine people with a spinal cord injury, we compared central and peripheral hemodynamic and ventilatory responses to one-leg passive knee extension with and without visual feedback (M+VF and M-VF, respectively) as well as in a third trial with no movement or visual feedback but the perception of movement (F). Ventilation (Ve), heart rate, stroke volume, cardiac output, mean arterial pressure, and leg blood flow (LBF) were evaluated during the three protocols. Ve increased rapidly from baseline in M+VF (55 ± 11%), M-VF (63 ± 13%), and F (48 ± 12%) trials. Central hemodynamics (heart rate, stroke volume, cardiac output, and mean arterial pressure) were unchanged in all trials. LBF increased from baseline by 126 ± 18 ml/min in the M+VF protocol and 109 ± 23 ml/min in the M-VF protocol but was unchanged in the F protocol. Therefore, with the use of model that is devoid of afferent feedback from the legs, the results of this study reveal that, although arousal is invoked by passive movement or the thought of passive movement, as evidenced by the increase in Ve, there is no central or peripheral hemodynamic impact of this increased neural activity. Additionally, this study revealed that a central hemodynamic response is not an obligatory component of movement-induced LBF.  相似文献   
126.
Cell-type-based analysis of microRNA profiles in the mouse brain   总被引:2,自引:0,他引:2  
He M  Liu Y  Wang X  Zhang MQ  Hannon GJ  Huang ZJ 《Neuron》2012,73(1):35-48
MicroRNAs (miRNA) are implicated in brain development and function but the underlying mechanisms have been difficult to study in part due to the cellular heterogeneity in neural circuits. To systematically analyze miRNA expression in neurons, we have established a miRNA tagging and affinity-purification (miRAP) method that is targeted to cell types through the Cre-loxP binary system in mice. Our studies of the neocortex and cerebellum reveal the expression of a large fraction of known miRNAs with distinct profiles in glutamatergic and GABAergic neurons and subtypes of GABAergic neurons. We further detected putative novel miRNAs, tissue or cell type-specific strand selection of miRNAs, and miRNA editing. Our method thus will facilitate a systematic analysis of miRNA expression and regulation in specific neuron types in the context of neuronal development, physiology, plasticity, pathology, and disease models, and is generally applicable to other cell types and tissues.  相似文献   
127.
128.
Morris DH  Dubnau J  Park JH  Rawls JM 《Genetics》2012,191(4):1227-1238
DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals.  相似文献   
129.
Body composition is known to vary dramatically among mammals, even in closely related species, yet this issue has never been systematically investigated. Here, we examine differences in muscle mass scaling among mammals, and explore how primate body composition compares to that of nonprimate mammals. We use a literature-based sample of eutherian and metatherian mammals, and combine this with new dissection-based data on muscularity in a variety of strepsirrhine primates and the haplorhine, Tarsius syrichta. Our results indicate an isometric scaling relationship between total muscle mass and total body mass across mammals. However, we documented substantial variation in muscularity in mammals (21-61% of total body mass), which can be seen both within and between taxonomic groups. We also found that primates are under-muscled when compared to other mammals. This difference in body composition may in part reflect the functional consequences of arboreality, as arboreal species have significantly lower levels of muscularity than terrestrial species.  相似文献   
130.
Inhibitory signaling through Tyr985 of the leptin receptor contributes to the attenuation of anorectic leptin action in obese animals. Leptin receptor (LEPR-B) Tyr985Leu homozygote mutant mice (termed l/l) were previously generated to study Tyr985's contributions to inhibition of LEPR-B signaling; young female l/l mice display a lean, leptin-sensitive phenotype, while young male l/l are not significantly different from wild-type. We report here that testosterone (but not estrogen) determines the sex-specificity of the l/l phenotype. This provides additional insight into the cellular mechanism by which gonadal hormones determine central sensitivity to leptin, and may help elucidate the long-noted sex differences in leptin sensitivity. Additionally, we observed that Tyr985 signaling protects against a diet-dependent switch that exacerbates obesity with high fat feeding, such that the enhanced leptin sensitivity of l/l mice on a normal diet leads to increased adiposity in the face of chronic high-fat diet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号