首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   68篇
  2023年   5篇
  2022年   8篇
  2021年   22篇
  2020年   12篇
  2019年   10篇
  2018年   16篇
  2017年   19篇
  2016年   24篇
  2015年   44篇
  2014年   40篇
  2013年   35篇
  2012年   54篇
  2011年   52篇
  2010年   32篇
  2009年   24篇
  2008年   55篇
  2007年   33篇
  2006年   28篇
  2005年   29篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   1篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有635条查询结果,搜索用时 15 毫秒
541.
Abstract The Pacific islands off southern California, U.S.A. and Baja California, Mexico hold potential for the conservation and restoration of California Mediterranean coastal ecosystems. However, the presence of exotic herbivores and invasive plants pose threats to these systems. Here, we use introduced herbivore removal as a large‐scale experimental manipulation to examine the importance of top‐down and bottom‐up processes to a large‐scale restoration effort. Using a paired approach on the Todos Santos Islands, Mexico we removed herbivores from one island, while they temporarily remained on an adjacent and similar island. We augmented this experiment with smaller scale herbivore exclosures on the control island. At both scales we failed to detect an herbivore effect on the plant community; rather plant community dynamics appeared to be dominated by El Niño related precipitation and exotic annuals. A parallel experiment on the San Benito Islands, Mexico revealed a different dynamic: Top‐down effects on the plant community by exotic herbivores were evident. Differences in the response from the plant communities to both exotic herbivore presence and removal between these two island groups, along with Santa Barbara Island, U.S.A., where restoration has been on‐going, raise important questions in ecosystem restoration. The history of anthropogenic disturbance, exotic plant abundance, and aridity play roles in postherbivore removal recovery. Although island conservation practitioners have honed the ability to remove exotic mammals from islands, development of invasive plant removal techniques is needed to fully capitalize on the conservation potential of California island ecosystems.  相似文献   
542.
The remains of northern fur seals (Callorhinus ursinus) are among the most abundant of pinniped elements recovered from mainland coastal archaeological sites in both California and Oregon. This is surprising as all contemporary northern fur seals breed exclusively on offshore islands, primarily at high latitudes, and the species is otherwise pelagic. The vulnerability of these animals to human predation suggests that either humans were foraging much further offshore than has been presumed or alternatively that the ecology of these animals has shifted during the late Holocene. We used isotopic and archaeofaunal analysis of the remains of pinnipeds from the middle to late Holocene of central and northern California to clarify the breeding and foraging behavior, and migration patterns of these ancient animals. The carbon and nitrogen isotope compositions of ancient northern fur seals reveal that these animals fed as far offshore as they do today, and that they remained at middle latitudes throughout the year. From an archaeological site at Moss Landing, California, we identified 16 skeletal elements from at least 12 very small northern fur seal pups. From another site near Mendocino, California, we identified the remains of at least 6 pups. We estimate the size and age of 5 of the young animals using sex-specific regressions of body length on the short dentary length derived from measurements of modern specimens. Our estimates indicate these ancient pups were substantially smaller, and therefore younger, than modern 3-month-old northern fur seal pups from similar latitudes and their nitrogen isotope compositions suggest they had not been weaned. As present-day northern fur seals do not leave their rookeries until they are at least 4 months old, we consider it highly unlikely that these ancient pups swam to these mainland locations from some distant island rookery. While there are numerous nearshore rocky outcrops along the Mendocino Coast, which may have supported small breeding colonies, the Moss Landing site is centered on a 40-km-long sandy beach, and is more than 120 km from what at the time were the nearest offshore islands. We conclude that northern fur seal adult females, subadults, and pups whose remains were recovered at the Moss Landing archaeological site must have been taken at a mainland rookery. Evidence that northern fur seals once bred on the mainland at this central California location suggests that the abundant remains of these animals at numerous other archaeological sites along the California coast also reflect the presence of nearby mainland rookeries. Based on the relative abundance of their remains in ancient human occupation sites and the widespread distribution of sites where their remains have been found, it appears that northern fur seals were once the predominant pinniped throughout a region where they now only rarely occur. Furthermore, their presence along the central and northern California coasts appears to have once severely limited the distribution of other pinnipeds, which are now common to the region.  相似文献   
543.
Puromycin is a peptidyl nucleoside endowed with significant antibiotic and anticancer properties, but also with an unfortunate nephrotoxic character that has hampered its use as a chemotherapeutic agent. Since hydrolysis of puromycin's amide to puromycin aminonucleoside is the first metabolic step leading to nephrotoxicity, we designed a 3′-C-hydrazide analog where the nitrogen and carbon functionality around the amide carbonyl of puromycin are inverted. The title compound, synthesized in 11 steps from D-xylose, cannot be metabolized to the nephrotoxic aminonucleoside. Evaluation of the title compound on Staphylococcus epidermidis and multi-drug resistance Staphylococcus aureus did not show significant antimicrobial activity up to a 400 μM concentration.  相似文献   
544.

Background

The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate.

Results

The macroscopic conductance of lysenin channels greatly diminished in the presence of cationic ZnO NPs. The inhibitory effects were asymmetrical relative to the direction of the electric field and addition site, suggesting electrostatic interactions between ZnO NPs and a binding site. Similar changes in the macroscopic conductance were observed when lysenin channels were reconstituted in neutral lipid membranes, implicating protein-NP interactions as the major contributor to the reduced transport capabilities. In contrast, no inhibitory effects were observed in the presence of anionic SnO2 NPs. Additionally, we demonstrate that inhibition of ion transport is not due to the dissolution of ZnO NPs and subsequent interactions of zinc ions with lysenin channels.

Conclusion

We conclude that electrostatic interactions between positively charged ZnO NPs and negative charges within the lysenin channels are responsible for the inhibitory effects on the transport of ions. These interactions point to a potential mechanism of cytotoxicity, which may not require NP internalization.
  相似文献   
545.
Models suggest that the mechanism of competition can influence the growth advantage associated with being large (in absolute body size or relative to other individuals in the population). Large size is advantageous under interference, but disadvantageous under exploitative competition. We addressed this prediction in a laboratory experiment on Rana temporaria tadpoles competing for limited food. There were 166 target individuals spanning a 10‐fold range in body mass reared for 3 days with three other individuals that were either the same size, half as large, or twice as large as the target. Relative growth rate (proportion per day) declined with size, and absolute growth rate (mass per day) reached a peak at intermediate size and declined thereafter. Tadpoles grew slowly if they were large relative to their competitors, although relative body size was less important than absolute size. As a result, size variation declined in groups that were initially composed of individuals of variable size. Thus, bigger was not better under exploitative competition. Our results help connect individual‐level behavior with individual growth and the size distribution of the population.  相似文献   
546.
547.
Hoverman JT  Auld JR  Relyea RA 《Oecologia》2005,144(3):481-491
The last decade has seen an explosion in the number of studies exploring predator-induced plasticity. Recently, there has been a call for more comprehensive approaches that can identify functional relationships between traits, constraints on phenotypic responses, and the cost and benefits of alternative phenotypes. In this study, we exposed Helisoma trivolvis, a freshwater snail, to a factorial combination of three resource levels and five predator environments (no predator, one or two water bugs, and one or two crayfish) and examined ten traits including behavior, morphology, and life history. Each predator induced a unique suite of behavioral and morphological responses. Snails increased near-surface habitat use with crayfish but not with water bugs. Further, crayfish induced narrow and high shells whereas water bugs induced wide shells and wide apertures. In terms of life history, both predators induced delayed reproduction and greater mass at reproduction. However, crayfish induced a greater delay in reproduction that resulted in reduced fecundity whereas water bugs did not induce differences in fecundity. Resource levels impacted the morphology of H. trivolvis; snails reared with greater resource levels produced higher shells, narrower shells, and wider apertures. Resource levels also impacted snail life history; lower resources caused longer times to reproduction and reduced fecundity. Based on an analysis of phenotypic correlations, the morphological responses to each predator most likely represent phenotypic trade-offs. Snails could either produce invasion-resistant shells for defense against water bugs or crush-resistant shells for defense against crayfish, but not both. Our use of a comprehensive approach to examine the responses of H. trivolvis has provided important information regarding the complexity of phenotypic responses to different environments, the patterns of phenotypic integration across environments, and the potential costs and benefits associated with plastic traits.  相似文献   
548.
Unlike most organ systems, which have evolved to maintain homeostasis, the brain has been selected to sense and adapt to environmental stimuli by constantly altering interactions in a gene network that functions within a larger neural network. This unique feature of the central nervous system provides a remarkable plasticity of behavior, but also makes experimental investigations challenging. Each experimental intervention ramifies through both gene and neural networks, resulting in unpredicted and sometimes confusing phenotypic adaptations. Experimental dissection of mechanisms underlying behavioral plasticity ultimately must accomplish an integration across many levels of biological organization, including genetic pathways acting within individual neurons, neural network interactions which feed back to gene function, and phenotypic observations at the behavioral level. This dissection will be more easily accomplished for model systems such as Drosophila, which, compared with mammals, have relatively simple and manipulable nervous systems and genomes. The evolutionary conservation of behavioral phenotype and the underlying gene function ensures that much of what we learn in such model systems will be relevant to human cognition. In this essay, we have not attempted to review the entire Drosophila memory field. Instead, we have tried to discuss particular findings that provide some level of intellectual synthesis across three levels of biological organization: behavior, neural circuitry and biochemical pathways. We have attempted to use this integrative approach to evaluate distinct mechanistic hypotheses, and to propose critical experiments that will advance this field.  相似文献   
549.
To better understand the molecular basis for some of the unique mechanical properties of tonic smooth muscle, we use a laser trap to assay the mechanochemistry of single smooth muscle heavy meromyosin molecules lacking a seven-amino acid insert in the nucleotide binding loop (minus insert). We measured a second-order ATP-induced actin dissociation rate, kT, of 2.2 x 10(6) m(-1) s(-1), an ADP release rate, k-D, of 19 s(-1), a second-order ADP binding rate, kD, of 60 x 10(5) m(-1) s(-1), and an ADP affinity, KD, of 3.2 microm, which is more than 100-fold greater than that measured for skeletal muscle myosin. By performing in vitro motility studies under nearly identical conditions, we show that the relatively slow actin velocity generated by minus-insert heavy meromyosin is significantly influenced, but not limited, by k-D. Our results support a model in which two separate intermediate steps in the actin-myosin catalyzed ATP hydrolysis reaction are energetically coupled through mechanical interactions, and we discuss this model in the context of the ability of tonic muscle to maintain high forces at low energetic cost (latch).  相似文献   
550.
ATP-binding cassette A1 (ABCA1) is a key mediator of cholesterol and phospholipid efflux to apolipoprotein particles. We show that ABCA1 is a constitutively phosphorylated protein in both RAW macrophages and in a human embryonic kidney cell line expressing ABCA1. Furthermore, we demonstrate that phosphorylation of ABCA1 is mediated by protein kinase A (PKA) or a PKA-like kinase in vivo. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assays, we show that Ser-1042 and Ser-2054, located in the nucleotide binding domains of ABCA1, are major phosphorylation sites for PKA. ApoA-I-dependent phospholipid efflux was decreased significantly by mutation of Ser-2054 alone and Ser-1042/Ser-2054 but was not significantly impaired with Ser-1042 alone. The mechanism by which ABCA1 phosphorylation affected ApoA-I-dependent phospholipid efflux did not involve either alterations in ApoA-I binding or changes in ABCA1 protein stability. These studies demonstrate a novel serine (Ser-2054) on the ABCA1 protein crucial for PKA phosphorylation and for regulation of ABCA1 transporter activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号