首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   90篇
  2023年   5篇
  2022年   9篇
  2021年   23篇
  2020年   13篇
  2019年   13篇
  2018年   18篇
  2017年   25篇
  2016年   30篇
  2015年   53篇
  2014年   55篇
  2013年   50篇
  2012年   81篇
  2011年   69篇
  2010年   44篇
  2009年   36篇
  2008年   64篇
  2007年   40篇
  2006年   36篇
  2005年   41篇
  2004年   30篇
  2003年   35篇
  2002年   25篇
  2001年   14篇
  2000年   14篇
  1999年   13篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1958年   1篇
  1955年   1篇
排序方式: 共有896条查询结果,搜索用时 0 毫秒
891.
892.
This work describes a detailed quantitative interaction study between the novel plastidial chaperone receptor OEP61 and isoforms of the chaperone types Hsp70 and Hsp90 using the optical method of total internal reflection ellipsometry (TIRE). The receptor OEP61 was electrostatically immobilized on a gold surface via an intermediate layer of polycations. The TIRE measurements allowed the evaluation of thickness changes in the adsorbed molecular layers as a result of chaperone binding to receptor proteins. Hsp70 chaperone isoforms but not Hsp90 were shown to be capable of binding OEP61. Dynamic TIRE measurements were carried out to evaluate the affinity constants of the above reactions and resulted in clear discrimination between specific and nonspecific binding of chaperones as well as differences in binding properties between the highly similar Hsp70 isoforms.  相似文献   
893.
Particle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images. However, it is not clear whether images generated by these methods yield accurate quantitative measurements such as diffusion parameters in (single) particle tracking experiments. Here, we evaluate the performance of two popular deep learning denoising software packages for particle tracking, using synthetic data sets and movies of diffusing chromatin as biological examples. With synthetic data, both supervised and unsupervised deep learning restored particle motions with high accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in three-dimensional data sets. Experimentally, we found that, while both supervised and unsupervised approaches improved tracking results compared with the original noisy images, supervised learning generally outperformed the unsupervised approach. We find that nicer-looking image sequences are not synonymous with more precise tracking results and highlight that deep learning algorithms can produce deceiving artifacts with extremely noisy images. Finally, we address the challenge of selecting parameters to train convolutional neural networks by implementing a frugal Bayesian optimizer that rapidly explores multidimensional parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study provides quantitative outcome measures of image restoration using deep learning. We anticipate broad application of this approach to critically evaluate artificial intelligence solutions for quantitative microscopy.  相似文献   
894.
Our objective was to validate a commercially available ELISA to measure antibody titers against Epstein-Barr virus (EBV) in dried blood spots (DBS) to replace a previously validated assay for DBS that is no longer available. We evaluated the precision, reliability, and stability of the assay for the measurement of EBV antibodies in matched plasma, fingerprick DBS, and venous blood DBS samples from 208 individuals. Effects of hematocrit and DBS sample matrix on EBV antibody determination were also investigated, and the cutoff for seropositivity in DBS was determined. A conversion equation was derived to enable comparison of results generated using this method with the former DBS method. There was a high correlation between plasma and DBS EBV antibody titers (R2 = 0.93) with very little bias (?0.07 based on Bland-Altman analysis). The assay showed good linearity and did not appear to be affected by the DBS matrix, and physiological hematocrit levels had no effect on assay performance. There was reasonable agreement between DBS EBV titer estimates obtained using this assay and the previously validated assay (R2 = 0.72). The commercially available ELISA assay for EBV antibody titers that we validated for use with DBS will facilitate continued investigation of EBV antibody titers in DBS.  相似文献   
895.
Doppel protein (Dpl) is a paralog of the cellular form of the prion protein (PrPC), together sharing common structural and biochemical properties. Unlike PrPC, which is abundantly expressed throughout the central nervous system (CNS), Dpl protein expression is not detectable in the CNS. Interestingly, its ectopic expression in the brain elicits neurodegeneration in transgenic mice. Here, by combining native isoelectric focusing plus non-denaturing polyacrylamide gel electrophoresis and mass spectrometry analysis, we identified two Dpl binding partners: rat alpha-1-inhibitor-3 (α1I3) and, by sequence homology, alpha-2-macroglobulin (α2M), two known plasma metalloproteinase inhibitors. Biochemical investigations excluded the direct interaction of PrPC with either α1I3 or α2M. Nevertheless, enzyme-linked immunosorbent assays and surface plasmon resonance experiments revealed a high affinity binding occurring between PrPC and Dpl. In light of these findings, we suggest a mechanism for Dpl-induced neurodegeneration in mice expressing Dpl ectopically in the brain, linked to a withdrawal of natural inhibitors of metalloproteinase such as α2M. Interestingly, α2M has been proven to be a susceptibility factor in Alzheimer''s disease, and as our findings imply, it may also play a relevant role in other neurodegenerative disorders, including prion diseases.  相似文献   
896.
An experimental design is proposed for high-throughput testing of combined interventions that might increase life expectancy in rodents. There is a growing backlog of promising treatments that have never been tested in mammals, and known treatments have not been tested in combination. The dose-response curve is often nonlinear, as are the interactions among different therapies. Herein are proposed two experimental designs optimized for detecting high-value combinations. In Part I, numerical simulation is used to explore a protocol for testing different dosages of a single intervention. With reasonable and general biological assumptions about the dose-response curve, information is maximized when each animal receives a different dosage. In Part II, numerical simulation is used to explore a protocol for testing interactions among many combinations of treatments, once their individual dosages have been established. Combinations of three are identified as a sweet spot for statistics. To conserve resources, the protocol is designed to identify those outliers that lead to life extension greater than 50%, but not to offer detailed survival curves for any treatments. Every combination of three treatments from a universe of 15 total treatments is represented, with just three mice replicating each combination. Stepwise regression is used to infer information about the effects of individual treatments and all their pairwise interactions. Results are not quite as robust as for the dosage protocol in Part I, but if there is a combination that extends lifespan by more than 50%, it will be detected with 80% certainty. These two screening protocols offer the possibility of expediting the identification of treatment combinations that are most likely to have the largest effect, while controlling costs overall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号