首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2405篇
  免费   269篇
  国内免费   6篇
  2023年   10篇
  2022年   25篇
  2021年   48篇
  2020年   25篇
  2019年   38篇
  2018年   49篇
  2017年   54篇
  2016年   74篇
  2015年   125篇
  2014年   150篇
  2013年   166篇
  2012年   194篇
  2011年   184篇
  2010年   103篇
  2009年   85篇
  2008年   113篇
  2007年   119篇
  2006年   140篇
  2005年   108篇
  2004年   97篇
  2003年   102篇
  2002年   83篇
  2001年   34篇
  2000年   52篇
  1999年   36篇
  1998年   27篇
  1997年   25篇
  1996年   24篇
  1995年   18篇
  1994年   16篇
  1993年   23篇
  1992年   23篇
  1991年   31篇
  1990年   10篇
  1989年   26篇
  1988年   20篇
  1987年   17篇
  1986年   13篇
  1985年   20篇
  1984年   18篇
  1983年   16篇
  1982年   11篇
  1981年   21篇
  1980年   10篇
  1979年   16篇
  1978年   18篇
  1977年   7篇
  1975年   7篇
  1973年   8篇
  1971年   7篇
排序方式: 共有2680条查询结果,搜索用时 203 毫秒
121.
122.
123.
The growth-arrest-specific 2 (gas2) gene was initially identified on account of its high level of expression in murine fibroblasts under growth arrest conditions, followed by downregulation upon reentry into the cell cycle (Schneider et al., Cell 54, 787-793, 1988). In this study, the expression patterns of the gas2 gene and the Gas2 peptide were established in the developing limbs of 11.5- to 14. 5-day mouse embryos. It was found that gas2 was expressed in the interdigital tissues, the chondrogenic regions, and the myogenic regions. Low-density limb culture and Brdu incorporation assays revealed that gas2 might play an important role in regulating chondrocyte proliferation and differentiation. Moreover, it might play a similar role during limb myogenesis. In addition to chondrogenesis and myogeneis, gas2 is involved in the execution of the apoptotic program in hindlimb interdigital tissues-by acting as a death substrate for caspase enzymes. TUNEL analysis demonstrated that the interdigital tissues underwent apoptosis between 13.5 and 15.5 days. Exactly at these time points, the C-terminal domain of the Gas2 peptide was cleaved as revealed by Western blot analysis. Moreover, pro-caspase-3 (an enzyme that can process Gas2) was cleaved into its active form in the interdigital tissues. The addition of zVAD-fmk, a caspase enzyme inhibitor, to 12.5-day-old hindlimbs maintained in organ culture revealed that the treatment inhibited interdigital cell death. This inhibition correlated with the absence of the Gas2 peptide and pro-caspase-3 cleavage. The data suggest that Gas2 might be involved in the execution of the apoptotic process.  相似文献   
124.
IL-12 has been shown to enhance cellular immunity in vitro and in vivo. Recent reports have suggested that combining DNA vaccine approach with immune stimulatory molecules delivered as genes may significantly enhance Ag-specific immune responses in vivo. In particular, IL-12 molecules could constitute an important addition to a herpes vaccine by amplifying specific immune responses. Here we investigate the utility of IL-12 cDNA as an adjuvant for a herpes simplex virus-2 (HSV-2) DNA vaccine in a mouse challenge model. Direct i.m. injection of IL-12 cDNA induced activation of resting immune cells in vivo. Furthermore, coinjection with IL-12 cDNA and gD DNA vaccine inhibited both systemic gD-specific Ab and local Ab levels compared with gD plasmid vaccination alone. In contrast, Th cell proliferative responses and secretion of cytokines (IL-2 and IFN-gamma) and chemokines (RANTES and macrophage inflammatory protein-1alpha) were significantly increased by IL-12 coinjection. However, the production of cytokines (IL-4 and IL-10) and chemokine (MCP-1) was inhibited by IL-12 coinjection. IL-12 coinjection with a gD DNA vaccine showed significantly better protection from lethal HSV-2 challenge compared with gD DNA vaccination alone in both inbred and outbred mice. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vivo CD4+ T cell deletion. Thus, IL-12 cDNA as a DNA vaccine adjuvant drives Ag-specific Th1 type CD4+ T cell responses that result in reduced HSV-2-derived morbidity as well as mortality.  相似文献   
125.
126.
Estrogen has a profound impact on human physiology and affects numerous genes. The classical estrogen reaction is mediated by its receptors (ERs), which bind to the estrogen response elements (EREs) in target gene's promoter region. Due to tedious and expensive experiments, a limited number of human genes are functionally well characterized. It is still unclear how many and which human genes respond to estrogen treatment. We propose a simple, economic, yet effective computational method to predict a subclass of estrogen responsive genes. Our method relies on the similarity of ERE frames across different promoters in the human genome. Matching ERE frames of a test set of 60 known estrogen responsive genes to the collection of over 18,000 human promoters, we obtained 604 candidate genes. Evaluating our result by comparison with the published microarray data and literature, we found that more than half (53.6%, 324/604) of predicted candidate genes are responsive to estrogen. We believe this method can significantly reduce the number of testing potential estrogen target genes and provide functional clues for annotating part of genes that lack functional information.  相似文献   
127.
128.
We have recently shown that in colon cancer cells, Vitamin D receptor (VDR) interacts with the catalytic subunit of Ser/Thr protein phosphatases, PP1c and PP2Ac, and induces their enzymatic activity in a ligand-dependent manner. The VDR-PP1c and VDR-PP2Ac interactions were ligand independent in vivo, and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-mediated increase in VDR-associated phosphatase activity resulted in dephosphorylation and inactivation of p70S6 kinase in colon cancer cells. Here, we demonstrate that in myeloid leukemia cells, 1,25(OH)(2)D(3) treatment increased the Thr389 phosphorylation of p70S6 kinase. Accordingly, 1,25(OH)(2)D(3) decreased VDR-associated Ser/Thr protein phosphatase activity by dissociating VDR-PP1c and VDR-PP2Ac interactions. Further, 1,25(OH)(2)D(3) increased the association between VDR and Thr389 phosphorylated p70S6 kinase. Finally, by using non-secosteroidal VDR ligands, we demonstrate a separation between transactivation and p70S6 kinase phosphorylation activities of VDR and show pharmacologically that p70S6 kinase phosphorylation correlates with HL-60 cell differentiation.  相似文献   
129.
Glutathione peroxidase is a selenium-containing, antioxidant enzyme previously implicated in the risk and development of lung and breast cancer, in part the result of allelic loss at the GPx-1 locus. This study examined allelic loss at the same locus in squamous cell carcinomas of the head and neck. The frequency of a polymorphism at codon 198 resulting in either a leucine or a proline at that position was surveyed by comparing 133 DNA samples obtained from head and neck tumors and 517 samples obtained from cancer-free individuals. Tumor DNAs exhibited fewer pro/leu heterozygotes as compared to DNA obtained from the cancer-free population. Fewer GPx-1 heterozygotes were verified by determining the frequency of highly polymorphic alanine repeat sequences in the same gene. The analysis revealed an approximately 42% reduction in heterozygosity in the DNA from the tumor samples. In order to assess loss of heterozygosity (LOH) at the GPx-1 locus, DNA was genotyped from peripheral lymphocytes, tumor tissue, and microscopically normal tissues adjacent to the tumor, derived from the same patients. These studies indicated LOH at the GPx-1 locus in each of the three tumor/normal tissues sample sets examined. Furthermore, LOH in the microscopically normal tissues at the tumor margin occurred in two of the three sample sets examined. These data implicate GPx-1 in the development of squamous cell carcinoma the head and neck and suggest that allelic loss of this gene, or one tightly linked to it, is an early event in the development of this type of malignancy. Author to whom all correspondence and reprint requests should be addressed. These authors contributed equally to this work.  相似文献   
130.
Structural proteomics: a tool for genome annotation   总被引:1,自引:0,他引:1  
In any newly sequenced genome, 30% to 50% of genes encode proteins with unknown molecular or cellular function. Fortunately, structural genomics is emerging as a powerful approach of functional annotation. Because of recent developments in high-throughput technologies, ongoing structural genomics projects are generating new structures at an unprecedented rate. In the past year, structural studies have identified many new structural motifs involved in enzymatic catalysis or in binding ligands or other macromolecules (DNA, RNA, protein). The efficiency by which function is deduced from structure can be further improved by the integration of structure with bioinformatics and other experimental approaches, such as screening for enzymatic activity or ligand binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号