首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   26篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   10篇
  2013年   12篇
  2012年   17篇
  2011年   19篇
  2010年   10篇
  2009年   5篇
  2008年   19篇
  2007年   16篇
  2006年   24篇
  2005年   21篇
  2004年   15篇
  2003年   28篇
  2002年   26篇
  2001年   5篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1986年   3篇
  1985年   4篇
  1984年   7篇
  1982年   2篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1962年   2篇
  1961年   1篇
  1960年   1篇
排序方式: 共有378条查询结果,搜索用时 46 毫秒
21.
22.
23.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   
24.
Gangliosides are ubiquitous membrane-associated glycosphingolipids, which are involved in cell growth and differentiation. Most tumor cells synthesize and shed large amounts of gangliosides into their microenvironment, and many studies have unraveled their immunosuppressive properties. In the present study we analyzed the effects of GM3 and GD3 gangliosides, purified from human melanoma tumors, on the differentiation of monocyte-derived dendritic cells (MoDC). At concentrations close to those detected in the sera from melanoma patients, both gangliosides dose-dependently inhibit the phenotypic and functional differentiation of MoDC, as assessed by a strong down-regulation of CD1a, CD54, CD80, and CD40 Ags and impaired allostimulatory function on day 6 of culture. Furthermore, GM3 and GD3 gangliosides decreased the viable cell yield and induced significant DC apoptosis. Finally, addition of GD3 to differentiating DC impaired their subsequent maturation induced by CD154. The resulting DC produced low amounts of IL-12 and large amounts of IL-10, a cytokine pattern that might hamper an efficient antitumor immune response. In conclusion, the results demonstrate that gangliosides impair the phenotypic and functional differentiation of MoDC and induce their apoptosis, which may be an additional mechanism of human melanoma escape.  相似文献   
25.
Schistomiasis is a debilitating parasitic disease which affects 200 million people, causing life-threatening complications in 10% of the patients. This paper reports the crystal structure of the Schistosoma haematobium 28 kDa glutathione S-transferase, a multifunctional enzyme involved in host-parasite interactions and presently considered as a promising vaccine candidate against schistosomiasis. The structures of the GSH-free enzyme, as well as the partially (approximately 40%) and almost fully (approximately 80%) GSH-saturated enzyme, exhibit a unique feature, absent in previous GST structures, concerning the crucial and invariant Tyr10 side chain which occupies two alternative positions. The canonical conformer, which allows an H-bond to be formed between the side chain hydroxyl group and the activated thiolate of GSH, is somewhat less than 50% occupied. The new conformer, with the phenoxyl ring on the opposite side of the mobile loop connecting strand 1 and helix 1, is stabilized by a polar interaction with the guanidinium group of the conserved Arg21 side chain. The presence of two conformers of Tyr10 may provide a clue about clarifying the multiple catalytic functions of Sh28GST and might prove to be relevant for the design of specific antischistosomal drugs. The K(d) for GSH binding was determined by equilibrium fluorescence titrations to be approximately 3 microM and by stopped-flow rapid mixing experiments to be approximately 9 microM. The relatively tight binding of GSH by Sh28GST explains the residually bound GSH in the crystal and supports a possible role of GSH as a tightly bound cofactor involved in the catalytic mechanism for prostaglandin D(2) synthase activity.  相似文献   
26.
The adsorption of DNA molecules onto a flat mica surface is a necessary step to perform atomic force microscopy studies of DNA conformation and observe DNA-protein interactions in physiological environment. However, the phenomenon that pulls DNA molecules onto the surface is still not understood. This is a crucial issue because the DNA/surface interactions could affect the DNA biological functions. In this paper we develop a model that can explain the mechanism of the DNA adsorption onto mica. This model suggests that DNA attraction is due to the sharing of the DNA and mica counterions. The correlations between divalent counterions on both the negatively charged DNA and the mica surface can generate a net attraction force whereas the correlations between monovalent counterions are ineffective in the DNA attraction. DNA binding is then dependent on the fractional surface densities of the divalent and monovalent cations, which can compete for the mica surface and DNA neutralizations. In addition, the attraction can be enhanced when the mica has been pretreated by transition metal cations (Ni(2+), Zn(2+)). Mica pretreatment simultaneously enhances the DNA attraction and reduces the repulsive contribution due to the electrical double-layer force. We also perform end-to-end distance measurement of DNA chains to study the binding strength. The DNA binding strength appears to be constant for a fixed fractional surface density of the divalent cations at low ionic strength (I < 0.1 M) as predicted by the model. However, at higher ionic strength, the binding is weakened by the screening effect of the ions. Then, some equations were derived to describe the binding of a polyelectrolyte onto a charged surface. The electrostatic attraction due to the sharing of counterions is particularly effective if the polyelectrolyte and the surface have nearly the same surface charge density. This characteristic of the attraction force can explain the success of mica for performing single DNA molecule observation by AFM. In addition, we explain how a reversible binding of the DNA molecules can be obtained with a pretreated mica surface.  相似文献   
27.
Stabilization of membranes in human platelets freeze-dried with trehalose   总被引:17,自引:0,他引:17  
Human blood platelets are normally stored in blood banks for 3-5 days, after which they are discarded. We have launched an effort at developing means for preserving the platelets for long term storage. In previous studies we have shown that trehalose can be used to preserve biological membranes and proteins during drying and have provided evidence concerning the mechanism. A myth has grown up about special properties of trehalose, which we discuss here and clarify some of what is fact and what is misconception. We have found a simple way of introducing this sugar into the cytoplasm of platelets and have successfully freeze-dried the trehalose-loaded platelets, with very promising results. We present evidence that membrane microdomains are maintained intact in the platelets freeze-dried with trehalose. Finally, we propose a possible mechanism by which the microdomains are preserved.  相似文献   
28.
29.
30.
HU, a major component of the bacterial nucleoid, shares properties with histones, high mobility group proteins (HMGs), and other eukaryotic proteins. HU, which participates in many major pathways of the bacterial cell, binds without sequence specificity to duplex DNA but recognizes with high affinity DNA repair intermediates. Here we demonstrate that HU binds to double-stranded DNA, double-stranded RNA, and linear DNA-RNA duplexes with a similar low affinity. In contrast to this nonspecific binding to total cellular RNA and to supercoiled DNA, HU specifically recognizes defined structures common to both DNA and RNA. In particular HU binds specifically to nicked or gapped DNA-RNA hybrids and to composite RNA molecules such as DsrA, a small non-coding RNA. HU, which modulates DNA architecture, may play additional key functions in the bacterial machinery via its RNA binding capacity. The simple, straightforward structure of its binding domain with two highly flexible beta-ribbon arms and an alpha-helical platform is an alternative model for the elaborate binding domains of the eukaryotic proteins that display dual DNA- and RNA-specific binding capacities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号