首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1504篇
  免费   127篇
  国内免费   1篇
  1632篇
  2023年   6篇
  2022年   24篇
  2021年   39篇
  2020年   23篇
  2019年   15篇
  2018年   22篇
  2017年   17篇
  2016年   46篇
  2015年   60篇
  2014年   75篇
  2013年   92篇
  2012年   101篇
  2011年   97篇
  2010年   65篇
  2009年   57篇
  2008年   84篇
  2007年   92篇
  2006年   63篇
  2005年   70篇
  2004年   81篇
  2003年   75篇
  2002年   56篇
  2001年   17篇
  2000年   7篇
  1999年   22篇
  1998年   14篇
  1997年   21篇
  1996年   7篇
  1995年   8篇
  1994年   9篇
  1992年   16篇
  1991年   7篇
  1990年   11篇
  1989年   7篇
  1988年   6篇
  1987年   9篇
  1985年   9篇
  1984年   15篇
  1983年   9篇
  1982年   20篇
  1981年   8篇
  1980年   10篇
  1979年   12篇
  1978年   12篇
  1977年   8篇
  1974年   8篇
  1973年   6篇
  1968年   6篇
  1962年   7篇
  1957年   5篇
排序方式: 共有1632条查询结果,搜索用时 11 毫秒
991.
Aptamers are rare functional nucleic acids with binding affinity to and specificity for target ligands. Recent experiments have lead to the proposal of an induced‐fit binding mechanism for L ‐argininamide (Arm) and its binding aptamer. However, at the molecular level, this mechanism between the aptamer and its coupled ligand is still poorly understood. The present study used explicit solvent molecular dynamics (MD) simulations to examine the critical bases involved in aptamer‐Arm binding and the induced‐fit binding process at atomic resolution. The simulation results revealed that the Watson‐Crick pair (G10‐C16), C9, A12, and C17 bases play important roles in aptamer‐Arm binding, and that binding of Arm results in an aptamer conformation optimized through a general induced‐fit process. In an aqueous solution, the mechanism has the following characteristic stages: (a) adsorption stage, the Arm anchors to the binding site of aptamer with strong electrostatic interaction; (b) binding stage, the Arm fits into the binding site of aptamer by hydrogen‐bond formation; and (c) complex stabilization stage, the hydrogen bonding and electrostatic interactions cooperatively stabilize the complex structure. This study provides dynamics information on the aptamer‐ligand induced‐fit binding mechanism. The critical bases in aptamer‐ligand binding may provide a guideline in aptamer design for molecular recognition engineering.  相似文献   
992.
BackgroundTalaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors.Conclusions/SignificanceMp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei in macrophages.  相似文献   
993.
Changes in intracellular redox couples and redox reactive molecules have been implicated in the regulation of a variety of cellular processes, including cell proliferation and growth arrest by contact inhibition. However, the magnitude, direction, and temporal relationship of redox changes to cellular responses are incompletely defined. The present work sought to characterize redox and metabolic changes associated with proliferative stages to contact inhibition of growth in rat IEC-6 intestinal epithelial cells. From the first day of culture until 1 day before confluence, an increase in GSH concentrations and a significant reduction in the redox potential of the GSSG/2GSH couple were observed. These changes were accompanied by a decrease in relative reactive oxygen species (ROS) and nitric oxide (NO) concentrations and oxidation of the redox potential of the NADP+/reduced NADP and NAD+/NADH couples. Postconfluent cells exhibited a significant decrease in GSH concentrations and a significant oxidation of the GSSG/2GSH couple. When cell proliferation decreased, relative ROS concentrations increased (P < 0.01), whereas NO concentrations remained unchanged, and the NAD+/NADH couple became more reduced. Together, these data indicate that the redox potential of distinct couples varies differentially in both magnitude and direction during successive stages of IEC-6 growth. This finding points out the difficulty of defining intracellular redox status at particular stages of cell growth by examining only one redox species. In addition, the data provide a numerical framework for future research of regulatory mechanisms governed by distinct intracellular redox couples. cell proliferation; contact inhibition; glutathione  相似文献   
994.
LDL and HDL enriched in triglyceride promote abnormal cholesterol transport   总被引:2,自引:0,他引:2  
Hypertriglyceridemia induces multiple changes in lipoprotein composition. Here we investigate how one of these modifications, triglyceride (TG) enrichment, affects HDL and LDL function when this alteration occurs under conditions in which more polar components can naturally re-equilibrate. TG-enriched lipoproteins were produced by co-incubating VLDL, LDL, and HDL with cholesteryl ester (CE) transfer protein. The resulting 2.5-fold increase in TG/CE ratio did not measurably alter the apoprotein composition of LDL or HDL, or modify LDL size. HDL mean diameter increased slightly from 9.1 to 9.4 nm. Modified LDL was internalized by fibroblasts normally, but its protein was degraded much less efficiently. This likely reflects an aberrant apolipoprotein B (apoB) conformation, as suggested by its resistance to V8 protease digestion and altered LDL electrophoretic mobility. TG-enriched LDL ineffectively down-regulated cholesterol biosynthesis compared with control LDL at the same protein concentration, but was equivalent in sterol regulation when compared on a cholesterol basis. TG-enriched HDL promoted greater net cholesterol efflux from cholesterol-loaded J774 cells. However, cholesterol associated with TG-enriched HDL was inefficiently esterified by lecithin:cholesterol acyltransferase, and TG-enriched HDLs were poor donors of CE to HepG2 hepatocytes by selective uptake. We conclude that TG-enrichment, in the absence of other significant alterations in lipoprotein composition, is sufficient to alter both cholesterol delivery and removal mechanisms. Some of these abnormalities may contribute to increased coronary disease in hypertriglyceridemia.  相似文献   
995.
The objective of this study was to investigate the entrainment of melatonin rhythms in rams using symmetrical light-dark cycles of different period length. Five groups of six He de France rams were kept in 12L: 12D for 7 weeks and then (i) 12L: 12D, (ii) 11L: 11D, (iii) 10L: 10D, (iv) 13L: 13D and (v) 14L: 14D for a further 3 weeks. Environmental factors other than the light dark cycle were not controlled. The onset and offset of the plasma melatonin rhythm in DD after 3 weeks of the respective light treatments was assessed for 48 hr, immediately after transferring to DD. The duration of secretion in DD was positively related to the length of the previous dark phase. The phase of the melatonin rhythm with respect to the anticipated dark phase suggested entrainment with no change in phase-relationship to the zeitgeber by 12L: 12D and 13L : 13D. Entrainment with a phase-delay or a phase-advance was apparent after 11L: 11D and 14L: 14D, but the individual rhythms were not all synchronized with respect to each other after 10L: 10D. Activity recordings for 2-3-week periods during 12L: 12D, 10L: 10D and 14L: 14D all showed a major 24-hr component at all times, with activity during the light phase in 12L: 12D. It appears that melatonin may be readily desynchronized from overt activity-rest cycles in sheep. The upper and lower entrainment limits are probably greater than 28 hr and close to 20 hr cycles, respectively.  相似文献   
996.
In Melbourne, Australia, grass pollen is the predominant cause of hayfever in late spring and summer. The grass pollen season has been monitored in Melbourne, using a Burkard spore trap, for 13 years (1975–1981, 1985 and 1991–1997). Total counts for grass pollen were highly variable from one season to the next (approximately 1000 to >8000 grains/m3). The daily grass pollen counts also showed a high variability (0 to approximately 400 grains/m3). In this study, the grass pollen counts of the 13 years (12 grass pollen seasons, extending from October to January) have been compared with meteorological data in order to identify the conditions that can determine the daily amounts of grass pollen in the air. It was found that the seasonal total of grass pollen was directly correlated with the rainfall sum of the preceding 12 months (1 September–31 August): seasonal total of grass pollen (counts/m3)=18.161 × rainfall sum of the preceding 12 months (mm) −8541.5 (r s=0.74,P<0.005,n=12). The daily amounts of grass pollen in the air were positively correlated with the corresponding daily average ambient temperatures (P<0.001). The daily amount of grass pollen which was to be expected with a certain daily average temperature was linked to the seasonal total of grass pollen: in years with high total grass pollen counts, a lower daily average temperature was required for a high daily pollen count than in years with low total grass pollen counts. As the concentration of airborne grass pollen determines the severity of hayfever in sensitive patients, an estimation of daily grass pollen counts can provide an indication of potential pollinosis symptoms. We compared daily grass pollen counts with the reported symptomatic responses of hayfever sufferers in November 1985 and found that hayfever symptoms were significantly correlated to the grass pollen counts (P<0.001 for nasal,P<0.005 for eye symptoms). Thus, a combination of meteorological information (i.e. rainfall and temperature) allows for an estimation of the potential daily pollinosis symptoms during the grass pollen season. Here we propose a symptom estimation chart, allowing a quick prediction of eye and nasal symptoms that are likely to occur as a result of variations in meteorological conditions, thus enabling both physicians and patients to take appropriate avoidance measures or therapy.  相似文献   
997.
Conjugative transfer of Enterococcus faecalis plasmid pCF10 is induced by the heptapeptide pheromone cCF10. cCF10 produced by plasmid-free recipient cells is detected by pCF10-containing donor cells, which respond by induction of plasmid-encoded transfer functions. The pCF10-encoded membrane protein PrgY is essential to prevent donor cells from responding to endogenously produced pheromone while maintaining the ability to respond to pheromone from an exogenous source; this function has not been identified in any nonenterococcal prokaryotic signaling system. PrgY specifically inhibited endogenous cCF10 and cPD1 (a pheromone that induces transfer of closely related plasmid pPD1) but not cAD1 (which is specific for less-related plasmid pAD1). Ectopic expression of PrgY in plasmid-free recipient cells reduced pheromone activity in culture supernatants and reduced the ability of these cells to acquire pCF10 by conjugation but did not have any effect on the interaction of these cells with exogenously supplied cCF10. The cloned prgY gene could complement a pCF10 prgY null mutation, and complementation was used to identify point mutations impairing PrgY function. Such mutations also abolished the inhibitory effect of PrgY expression in recipients on pheromone production and on acquisition of pCF10. Most randomly generated point mutations identified in the genetic screen mapped to a predicted extracellular domain in the N terminus of PrgY that is conserved in a newly identified family of related proteins from disparate species including Borrelia burgdorferi, Archaeoglobus fulgidus, Arabidopsis thaliana, and Homo sapiens. The combined genetic and physiological data suggest that PrgY may sequester or inactivate cCF10 as it is released from the membrane.  相似文献   
998.
The potential role for commensal bacteria in colorectal carcinogenesis is explored in this review. Most colorectal cancers (CRCs) occur sporadically and arise from the gradual accumulation of mutations in genes regulating cell growth and DNA repair. Genetic mutations followed by clonal selection result in the transformation of normal cells into malignant derivatives. Numerous toxicological effects of colonic bacteria have been reported. However, those recognized as damaging epithelial cell DNA are most easily reconciled with the currently understood genetic basis for sporadic CRC. Thus, we focus on mechanisms by which particular commensal bacteria may convert dietary procarcinogens into DNA damaging agents (e.g., ethanol and heterocyclic amines) or directly generate carcinogens (e.g., fecapentaenes). Although these and other metabolic activities have yet to be linked directly to sporadic CRC, several lines of investigation are reviewed to highlight difficulties and progress in the area. Particular focus is given to commensal bacteria that alter the epithelial redox environment, such as production of oxygen radicals by Enterococcus faecalis or production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Super-oxide-producing E. faecalis has conclusively been shown to cause colonic epithelial cell DNA damage. Though SRB-derived hydrogen sulfide (H(2)S) has not been reported thus far to induce DNA damage or function as a carcinogen, recent data demonstrate that this reductant activates molecular pathways implicated in CRC. These observations combined with evidence that SRB carriage may be genetically encoded evoke a working model that incorporates multifactorial gene-environment interactions that appear to underlie the development of sporadic CRC.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号