首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2130篇
  免费   208篇
  国内免费   1篇
  2022年   21篇
  2021年   41篇
  2020年   26篇
  2019年   26篇
  2018年   29篇
  2017年   26篇
  2016年   49篇
  2015年   84篇
  2014年   98篇
  2013年   105篇
  2012年   126篇
  2011年   124篇
  2010年   72篇
  2009年   69篇
  2008年   121篇
  2007年   115篇
  2006年   80篇
  2005年   89篇
  2004年   80篇
  2003年   81篇
  2002年   70篇
  2001年   26篇
  2000年   44篇
  1999年   41篇
  1998年   21篇
  1997年   22篇
  1996年   14篇
  1995年   14篇
  1992年   20篇
  1991年   34篇
  1990年   29篇
  1989年   23篇
  1988年   21篇
  1987年   13篇
  1986年   19篇
  1985年   21篇
  1984年   32篇
  1983年   27篇
  1982年   20篇
  1981年   23篇
  1980年   12篇
  1979年   23篇
  1978年   27篇
  1977年   25篇
  1976年   26篇
  1975年   14篇
  1974年   15篇
  1973年   22篇
  1972年   15篇
  1968年   12篇
排序方式: 共有2339条查询结果,搜索用时 15 毫秒
81.
82.
The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.  相似文献   
83.
C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.  相似文献   
84.
Recently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S. chrysanthemifolius, which grow at high and low elevations, respectively, on Mount Etna, Sicily and form a hybrid zone at intermediate elevations. We used a newly generated genome‐wide single nucleotide polymorphism (SNP) dataset from 192 individuals collected over 18 localities along an elevational gradient to reconstruct the likely history of speciation, identify highly differentiated SNPs, and estimate the strength of divergent selection. We found that speciation in this system involved heterogeneous and bidirectional gene flow along the genome, and species experienced marked population size changes in the past. Furthermore, we identified highly‐differentiated SNPs between the species, some of which are located in genes potentially involved in ecological differences between species (such as photosynthesis and UV response). We analysed the shape of these SNPs’ allele frequency clines along the elevational gradient. These clines show significantly variable coincidence and concordance, indicative of the presence of multifarious selective forces. Selection against hybrids is estimated to be very strong (0.16–0.78) and one of the highest reported in literature. The combination of strong cumulative selection across the genome and previously identified intrinsic incompatibilities probably work together to maintain the genetic and phenotypic differentiation between these species – pointing to the importance of considering both intrinsic and extrinsic factors when studying divergence and speciation.  相似文献   
85.
Beta-catenin is linked with colorectal cancer (CRC). Therefore, it is of interest to design and develop novel compounds to combat CRC. Hence, we document compounds (chlorogenic acid, gallic acid, protocatechuic acid, quercetin and vanillic acid) from Lycopersicon esculentum with optimal binding features for further consideration.  相似文献   
86.
87.
88.
The conservation and management of endangered species requires an adequate understanding of their biology and ecology. Although there has been an increasing appreciation in Australia of the need for greater efforts to conserve insects, there is only limited information available that can be used to underpin conservation efforts. The endangered golden sun moth, Synemon plana (Lepidoptera: Castniidae) is a flagship species endemic to natural temperate grassland in south-eastern Australia. Most populations of this species are at considerable risk from habitat loss, weed invasion and inadequate management. Despite the considerable knowledge that exists about the species biology and ecology, efforts to improve the species conservation status are hampered because there are still critical gaps in our understanding of the species’ natural history. In particular, the ecology of the larvae is not known. Our study examined the abundance, population structure and reproductive biology of the moths in a broad sample of both natural temperate and exotic grassland remnants in and near Canberra in the Australian Capital Territory (ACT) in south-eastern Australia. The results fill critical gaps in the knowledge needed to achieve effective conservation management. From our findings, it is clear that the species inhabits grasslands dominated by a mixture of native wallaby grasses (Rytidosperma spp. (formerly Austrodanthonia)) and spear grasses (Austrostipa spp.). In contrast to earlier suggestions that S. plana is entirely confined to natural temperate grassland, mature and immature life stages of the species were also present in grasslands comprised entirely of the exotic Chilean needlegrass (Nassella neesiana). Most of the S. plana populations surveyed in the ACT were characterised by low relative abundance with only very few large populations being recorded. The conservation of exotic grasslands as substitute habitat for S. plana is discussed and suggestions regarding future monitoring and research of the species are provided.  相似文献   
89.
The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate‐induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread‐rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号