首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1339篇
  免费   111篇
  国内免费   1篇
  2022年   13篇
  2021年   28篇
  2020年   16篇
  2019年   16篇
  2018年   19篇
  2017年   19篇
  2016年   35篇
  2015年   52篇
  2014年   53篇
  2013年   67篇
  2012年   84篇
  2011年   80篇
  2010年   52篇
  2009年   44篇
  2008年   69篇
  2007年   74篇
  2006年   51篇
  2005年   54篇
  2004年   73篇
  2003年   66篇
  2002年   40篇
  2001年   14篇
  2000年   15篇
  1999年   22篇
  1998年   8篇
  1997年   14篇
  1992年   10篇
  1991年   9篇
  1990年   15篇
  1989年   12篇
  1988年   12篇
  1987年   10篇
  1986年   8篇
  1985年   14篇
  1984年   24篇
  1983年   15篇
  1982年   30篇
  1981年   19篇
  1980年   16篇
  1979年   15篇
  1978年   15篇
  1977年   8篇
  1976年   9篇
  1975年   12篇
  1974年   12篇
  1973年   16篇
  1969年   8篇
  1968年   9篇
  1967年   7篇
  1964年   7篇
排序方式: 共有1451条查询结果,搜索用时 31 毫秒
181.
One of the deadly hallmarks of cancer is its ability to prosper within the constraints of the host immune system. Recent advances in immunoproteomics and high-throughput technologies have lead to profiling of the antibody repertoire in cancer patients. This in turn has lead to the identification of tumour associated antigens/autoantibodies. Autoantibodies are extremely attractive and promising biomarker entities, however there has been relatively little discussion on how to interpret the humoral immune response. It may be that autoantibody profiles hold the key to ultimately uncovering neoplastic associated pathways and through the process of immunosculpting the tumour may have yielded an immune response in the early stages of malignant tumour development. The aim of this review is to discuss the utility of the autoantibody response that is elicited as a result of malignancy and discuss the advantages and limitations of autoantibody profiling. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   
182.
Senescence is shaped by age-dependent trade-offs between fitness components. Because males and females invest different resources in reproduction, the trade-offs behind age-dependent reproductive effort should be resolved differently in the sexes. In this study, we assess the effects of diet (high carbohydrate and low protein vs. equal carbohydrate and protein) and mating (once mated vs. virgin) on lifespan and age-dependent mortality in male and female field crickets (Teleogryllus commodus), and on male calling effort. Females always had higher actuarial ageing rates than males, and we found a clear lifespan cost of mating in females. Mated males, however, lived longer than virgin males, possibly because virgins call more than mated males. The fastest age-dependent increases in mortality were among mated males on the high-carbohydrate diet. Males on a high-carbohydrate diet showed a faster increase in calling effort earlier in life, and a more pronounced pattern of senescence once they reached this peak than did males on a diet with equal amounts of protein and carbohydrates. Our results provide evidence that the cost of mating in this cricket species is both diet and sex-dependent, and that the underlying causes of sex differences in life-history traits such as lifespan and senescence can be complex.  相似文献   
183.
Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.  相似文献   
184.
185.
186.
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pattern of the murine mCLCA6 using specific antibodies directed against the amino- and carboxy-terminal cleavage products of mCLCA6. Computational and biochemical characterizations revealed protein processing and structural elements shared with hCLCA2 including anchorage in the apical cell membrane by a transmembrane domain in the carboxy-terminal subunit. A systematic light- and electron-microscopic immunolocalization found mCLCA6 to be associated with the microvilli of non-goblet cell enterocytes in the murine small and large intestine but in no other tissues. The expression pattern was confirmed by quantitative RT-PCR following laser-capture microdissection of relevant tissues. Confocal laser scanning microscopy colocalized the mCLCA6 protein with the cystic fibrosis transmembrane conductance regulator CFTR at the apical surface of colonic crypt cells. Together with previously published functional data, the results support a direct or indirect role of mCLCA6 in transepithelial anion conductance in the mouse intestine.  相似文献   
187.
Protein aggregation is a ubiquitous phenomenon significant to all aspects of science. Notably, the formation of protein aggregates is frequently encountered in biochemical research and biopharmaceutical industry. Formation of protein aggregates is generally regarded to be associated with partially folded intermediate species that are susceptible to self-association due to the exposure of hydrophobic core. Evidence supports the concept that the formation of aggregates in vitro is a generic property of proteins. In human etiology, more than 20 different devastating human diseases have been reported to be associated with protein aggregation. Although protein aggregation diseases have been the center of intense research, much remains to be learned regarding the underlying molecular mechanisms. In this review, the general background information on protein aggregation is first provided. Next, we summarize the properties, characteristics and causes of protein aggregates. Finally, from the perspectives of epidemiology, pathogenesis, existing mechanisms, relevant hypotheses, and current as well as potential therapeutic approaches, two examples of protein aggregation diseases, Alzheimer's disease and cataract, are briefly discussed. Importantly, while a variety of molecules have been suggested, the effective therapeutic drugs for curing the diseases involving protein aggregation have yet to be identified. We believe that a better understanding of the mechanisms of protein aggregation process and an extensive investigation into the drug penetration, efficacy, and side effects will certainly aid in developing the successful pharmacological agents for these diseases.  相似文献   
188.
189.
Understanding in vivo subtalar joint kinematics is important for evaluation of subtalar joint instability, the design of a subtalar prosthesis and for analysing surgical procedures of the ankle and hindfoot. No accurate data are available on the normal range of subtalar joint motion. The purpose of this study was to introduce a method that enables the quantification of the extremes of the range of motion of the subtalar joint in a loaded state using multidetector computed tomography (CT) imaging. In 20 subjects, an external load was applied to a footplate and forced the otherwise unconstrained foot in eight extreme positions. These extreme positions were foot dorsiflexion, plantarflexion, eversion, inversion and four extreme positions in between the before mentioned positions. CT images were acquired in a neutral foot position and each extreme position separately. After bone segmentation and contour matching of the CT data sets, the helical axes were determined for the motion of the calcaneus relative to the talus between four pairs of opposite extreme foot positions. The helical axis was represented in a coordinate system based on the geometric principal axes of the subjects’ talus. The greatest relative motion between the calcaneus and the talus was calculated for foot motion from extreme eversion to extreme inversion (mean rotation about the helical axis of 37.3±5.9°, mean translation of 2.3±1.1 mm). A consistent pattern of range of subtalar joint motion was found for motion of the foot with a considerable eversion and inversion component.  相似文献   
190.
The evolutionarily conserved kelch-repeat protein muskelin was identified as an intracellular mediator of cell spreading. We discovered that its morphological activity is controlled by association with RanBP9/RanBPM, a protein involved in transmembrane signaling and a conserved intracellular protein complex. By subcellular fractionation, endogenous muskelin is present in both the nucleus and the cytosol. Muskelin subcellular localization is coregulated by its C terminus, which provides a cytoplasmic restraint and also controls the interaction of muskelin with RanBP9, and its atypical lissencephaly-1 homology motif, which has a nuclear localization activity which is regulated by the status of the C terminus. Transient or stable short interfering RNA–based knockdown of muskelin resulted in protrusive cell morphologies with enlarged cell perimeters. Morphology was specifically restored by complementary DNAs encoding forms of muskelin with full activity of the C terminus for cytoplasmic localization and RanBP9 binding. Knockdown of RanBP9 resulted in equivalent morphological alterations. These novel findings identify a role for muskelin–RanBP9 complex in pathways that integrate cell morphology regulation and nucleocytoplasmic communication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号