首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21184篇
  免费   2107篇
  国内免费   16篇
  23307篇
  2022年   205篇
  2021年   434篇
  2020年   237篇
  2019年   298篇
  2018年   383篇
  2017年   310篇
  2016年   457篇
  2015年   887篇
  2014年   866篇
  2013年   1190篇
  2012年   1517篇
  2011年   1451篇
  2010年   919篇
  2009年   831篇
  2008年   1166篇
  2007年   1194篇
  2006年   1104篇
  2005年   1146篇
  2004年   1084篇
  2003年   1008篇
  2002年   1015篇
  2001年   218篇
  2000年   165篇
  1999年   255篇
  1998年   275篇
  1997年   180篇
  1996年   168篇
  1995年   160篇
  1994年   148篇
  1993年   173篇
  1992年   157篇
  1991年   147篇
  1990年   142篇
  1989年   162篇
  1988年   156篇
  1987年   135篇
  1986年   126篇
  1985年   146篇
  1984年   145篇
  1983年   143篇
  1982年   187篇
  1981年   196篇
  1980年   144篇
  1979年   119篇
  1978年   137篇
  1977年   107篇
  1976年   107篇
  1975年   91篇
  1974年   98篇
  1973年   86篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Although peroxynitrite stimulates apoptosis in many cell types, whether peroxynitrite acts directly as an oxidant or the induction of apoptosis is because of the radicals derived from peroxynitrite decomposition remains unknown. Before undergoing apoptosis because of trophic factor deprivation, primary motor neuron cultures become immunoreactive for nitrotyrosine. We show here using tyrosine-containing peptides that free radical processes mediated by peroxynitrite decomposition products were required for triggering apoptosis in primary motor neurons and in PC12 cells cultures. The same concentrations of tyrosine-containing peptides required to prevent the nitration and apoptosis of motor neurons induced by trophic factor deprivation and of PC12 cells induced by peroxynitrite also prevented peroxynitrite-mediated nitration of motor neurons, brain homogenates, and PC12 cells. The heat shock protein 90 chaperone was nitrated in both trophic factor-deprived motor neurons and PC12 cells incubated with peroxynitrite. Tyrosine-containing peptides did not affect the induction of PC12 cell death by hydrogen peroxide. Tyrosine-containing peptides should protect by scavenging peroxynitrite-derived radicals and not by direct reactions with peroxynitrite as they neither increase the rate of peroxynitrite decomposition nor decrease the bimolecular peroxynitrite-mediated oxidation of thiols. These results reveal an important role for free radical-mediated nitration of tyrosine residues, in apoptosis induced by endogenously produced and exogenously added peroxynitrite; moreover, tyrosine-containing peptides may offer a novel strategy to neutralize the toxic effects of peroxynitrite.  相似文献   
992.
The small GTPase Rheb is a positive upstream regulator of the target of rapamycin (TOR) complex 1 in mammalian cells and can bind directly to TOR complex 1. To identify the regions of the Rheb surface most critical for signaling to TOR complex 1, we created a set of 26 mutants wherein clusters of 1-5 putative solvent-exposed residues were changed to alanine, ultimately changing 65 residues distributed over the entire Rheb surface. The signaling function of these mutants was assessed by their ability, in comparison to wild type Rheb, to restore the phosphorylation of S6K1(Thr389) when expressed transiently in amino acid-deprived 293T cells. The major finding is that two mutants situated in the Rheb switch 2 segment, Y67A/I69A and I76A/D77A, exhibit a near total loss of function, whereas extensive replacement of the switch 1 segment and other surface residues with alanines causes relatively little disturbance of Rheb rescue of S6K1 from amino acid withdrawal. This is surprising in view of the minimal impact of guanyl nucleotide on Rheb switch 2 configuration. The loss of function Rheb switch 2 mutants are well expressed and exhibit partial agonist function in amino acid-replete cells. They are unimpaired in their ability to bind GTP or mammalian (m)TOR in vivo or in vitro, and the mTOR polypeptides retrieved with these inactive Rheb mutants exhibit kinase activity in vitro comparable with mTOR bound to wild type Rheb. We conclude that Rheb signaling to mTOR in vivo requires a Rheb switch 2-dependent interaction with an element other than the three known polypeptide components of TOR complex 1.  相似文献   
993.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting neurotransmitter-carrying vesicle fusion to the plasma membrane of peripheral neurons. Unlike other zinc proteases, BoNTs recognize extended regions of SNAP25 for cleavage; however, the molecular basis for this extended substrate recognition is unclear. Here, we define a multistep mechanism for recognition and cleavage of SNAP25 by BoNT/A. SNAP25 initially binds along the belt region of BoNT/A, which aligns the P5 residue to the S5 pocket at the periphery of the active site. Although the exact order of each step of recognition of SNAP25 by BoNT/A at the active site is not clear, the initial binding could subsequently orient the P4'-residue of SNAP25 to form a salt bridge with the S4'-residue, which opens the active site allowing the P1'-residue access to the S1'-pocket. Subsequent hydrophobic interactions between the P3 residue of SNAP25 and the S3 pocket optimize alignment of the scissile bond for cleavage. This explains how the BoNTs recognize and cleave specific coiled SNARE substrates and provides insight into the development of inhibitors to prevent botulism.  相似文献   
994.
The Staphylococcus aureus transpeptidase Sortase A (SrtA) anchors virulence and colonization-associated surface proteins to the cell wall. SrtA selectively recognizes a C-terminal LPXTG motif, whereas the related transpeptidase Sortase B (SrtB) recognizes a C-terminal NPQTN motif. In both enzymes, cleavage occurs after the conserved threonine, followed by amide bond formation between threonine and the pentaglycine cross-bridge of cell wall peptidoglycan. Genetic and biochemical studies strongly suggest that SrtA and SrtB exhibit exquisite specificity for their recognition motifs. To better understand the origins of substrate specificity within these two isoforms, we used sequence and structural analysis to predict residues and domains likely to be involved in conferring substrate specificity. Mutational analyses and domain swapping experiments were conducted to test their function in substrate recognition and specificity. Marked changes in the specificity profile of SrtA were obtained by replacing the beta6/beta7 loop in SrtA with the corresponding domain from SrtB. The chimeric beta6/beta7 loop swap enzyme (SrtLS) conferred the ability to acylate NPQTN-containing substrates, with a k(cat)/K(m)(app) of 0.0062 +/- 0.003 m(-1) s(-1). This enzyme was unable to perform the transpeptidation stage of the reaction, suggesting that additional domains are required for transpeptidation to occur. The overall catalytic specificity profile (k(cat)/K(m)(app)(NPQTN)/k(cat)/K(m)(app)(LPETG)) of SrtLS was altered 700,000-fold from SrtA. These results indicate that the beta6/beta7 loop is an important site for substrate recognition in sortases.  相似文献   
995.
We previously showed that inositol hexakisphosphate kinase 2 (IHPK2) functions as a growth-suppressive and apoptosis-enhancing kinase during cell stress. Overexpression of IHPK2 sensitized ovarian carcinoma cell lines to the growth-suppressive and apoptotic effects of interferon beta (IFN-beta), IFN-alpha2, and gamma-irradiation. Expression of a kinase-dead mutant abrogated 50% of the apoptosis induced by IFN-beta. Because the kinase-dead mutant retained significant response to cell stressors, we hypothesized that a portion of the death-promoting function of IHPK2 was independent of its kinase activity. We now demonstrate that IHPK2 binds to tumor necrosis factor (TNF) receptor-associated factor (TRAF) 2 and interferes with phosphorylation of transforming growth factor beta-activated kinase 1 (TAK1), thereby inhibiting NF-kappaB signaling. IHPK2 contains two sites required for TRAF2 binding, Ser-347 and Ser-359. Compared with wild type IHPK2-transfected cells, cells expressing S347A and S359A mutations displayed 3.5-fold greater TAK1 activation following TNF-alpha. This mutant demonstrated a 6-10-fold increase in NF-kappaB DNA binding following TNF-alpha compared with wild type IHPK2-expressing cells in which NF-kappaB DNA binding was inhibited. Cells transfected with wild type IHPK2 or IHPK2 mutants that lacked S347A and S359A mutations displayed enhanced terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling staining following TNF-alpha. We believe that IHPK2-TRAF2 binding leads to attenuation of TAK1- and NF-kappaB-mediated signaling and is partially responsible for the apoptotic activity of IHPK2.  相似文献   
996.
997.
998.
A biological system, like any complex system, blends stochastic and deterministic features, displaying properties of both. In a certain sense, this blend is exactly what we perceive as the “essence of complexity” given we tend to consider as non-complex both an ideal gas (fully stochastic and understandable at the statistical level in the thermodynamic limit of a huge number of particles) and a frictionless pendulum (fully deterministic relative to its motion). In this commentary we make the statement that systems biology will have a relevant impact on nowadays biology if (and only if) will be able to capture the essential character of this blend that in our opinion is the generation of globally ordered collective modes supported by locally stochastic atomisms.  相似文献   
999.
Objective: The purpose of this study was to evaluate long‐term weight loss and eating and exercise behaviors of successful weight losers who lost weight using a low‐carbohydrate diet. Research Methods and Procedures: This study examined 3‐year changes in weight, diet, and physical activity in 891 subjects (96 low‐carbohydrate dieters and 795 others) who enrolled in the National Weight Control Registry between 1998 and 2001 and reported ≥30‐lb weight loss and ≥1 year weight loss maintenance. Results: Only 10.8% of participants reported losing weight after a low‐carbohydrate diet. At entry into the study, low‐carbohydrate diet users reported consuming more kcal/d (mean ± SD, 1895 ± 452 vs. 1398 ± 574); fewer calories in weekly physical activity (1595 ± 2499 vs. 2542 ± 2301); more calories from fat (64.0 ± 7.9% vs. 30.9 ± 13.1%), saturated fat (23.8 ± 4.1 vs. 10.5 ± 5.2), monounsaturated fat (24.4 ± 3.7 vs. 11.0 ± 5.1), and polyunsaturated fat (8.6 ± 2.7 vs. 5.5 ± 2.9); and less dietary restraint (10.8 ± 2.9 vs. 14.9 ± 3.9) compared with other Registry members. These differences persisted over time. No differences in 3‐year weight regain were observed between low‐carbohydrate dieters and other Registry members in intent‐to‐treat analyses (7.0 ± 7.1 vs. 5.7 ± 8.7 kg). Discussion: It is possible to achieve and maintain long‐term weight loss using a low‐carbohydrate diet. The long‐term health effects of weight loss associated with a high‐fat diet and low activity level merits further investigation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号