首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25409篇
  免费   2480篇
  国内免费   16篇
  2023年   119篇
  2022年   283篇
  2021年   629篇
  2020年   315篇
  2019年   415篇
  2018年   516篇
  2017年   431篇
  2016年   644篇
  2015年   1210篇
  2014年   1215篇
  2013年   1555篇
  2012年   1989篇
  2011年   1901篇
  2010年   1168篇
  2009年   1012篇
  2008年   1413篇
  2007年   1420篇
  2006年   1286篇
  2005年   1314篇
  2004年   1198篇
  2003年   1142篇
  2002年   1130篇
  2001年   228篇
  2000年   166篇
  1999年   270篇
  1998年   287篇
  1997年   194篇
  1996年   171篇
  1995年   161篇
  1994年   155篇
  1993年   176篇
  1992年   159篇
  1991年   148篇
  1990年   142篇
  1989年   163篇
  1988年   156篇
  1987年   135篇
  1986年   122篇
  1985年   144篇
  1984年   142篇
  1983年   138篇
  1982年   190篇
  1981年   191篇
  1980年   145篇
  1979年   117篇
  1978年   140篇
  1977年   106篇
  1976年   106篇
  1974年   98篇
  1973年   90篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
911.
Research in the United States and Europe has focused on the prejudice of majority groups towards minority groups, the implication somehow being that majority groups were more prejudiced than minority groups. In the former Soviet Union, ethnic environments were more complex; the same ethnic group could be a majority in one region but a minority in others. Using a sample of 1,459 first‐ and fourth‐year university students from eight regions of the former USSR, this study focuses on Russian, Tatar and Ukrainian respondents (n = 821) to test the hypothesis that the status of an ethnic group (majority/minority) or in‐group bias explains members’ prejudice. According to in‐group bias, all ethnic groups are equally prejudiced, minority and majority alike, whereas group status posits that groups in a majority position are more prejudiced. Findings show that group status has greater impact on prejudice than does in‐group bias. This applies, however, only to Russians. Interpretations of the findings rest on Soviet history and the rise of nationalism during the breakup of the Soviet Union.  相似文献   
912.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   
913.
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome P450 (CYP)-catalyzed ω-hydroxylation of arachidonic acid, induces oxidative stress and, in clinical studies, is associated with increased body mass index (BMI) and the metabolic syndrome. This study was designed to examine the effects of exogenous 20-HETE on mesenchymal stem cell (MSC)-derived adipocytes. The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases in humans) in MSCs decreased during adipocyte differentiation; however, exogenous administration of 20-HETE (0.1–1 μM) increased adipogenesis in a dose-dependent manner in these cells (P < 0.05). The inability of a 20-HETE analog to reproduce these effects suggested the involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2 selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by 20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE2, enhanced adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of 20-HETE and 20-OH-PGE2 resulted in the increased expression of the adipogenic regulators PPARγ and β-catenin in MSC-derived adipocytes. Taken together we show for the first time that 20-HETE-derived COX-2-dependent 20-OH-PGE2 enhances mature inflamed adipocyte hypertrophy in MSC undergoing adipogenic differentiation.  相似文献   
914.
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of “active” chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.  相似文献   
915.
916.
917.
The intracellular bacterial agent of Q fever, Coxiella burnetii, translocates effector proteins into its host cell cytosol via a Dot/Icm type IV secretion system (T4SS). The T4SS is essential for parasitophorous vacuole formation, intracellular replication, and inhibition of host cell death, but the effectors mediating these events remain largely undefined. Six Dot/Icm substrate-encoding genes were recently discovered on the C. burnetii cryptic QpH1 plasmid, three of which are conserved among all C. burnetii isolates, suggesting that they are critical for conserved pathogen functions. However, the remaining hypothetical proteins encoded by plasmid genes have not been assessed for their potential as T4SS substrates. In the current study, we further defined the T4SS effector repertoire encoded by the C. burnetii QpH1, QpRS, and QpDG plasmids that were originally isolated from acute-disease, chronic-disease, and severely attenuated isolates, respectively. Hypothetical proteins, including those specific to QpRS or QpDG, were screened for translocation using the well-established Legionella pneumophila T4SS secretion model. In total, six novel plasmid-encoded proteins were translocated into macrophage-like cells by the Dot/Icm T4SS. Four newly identified effectors are encoded by genes present only on the QpDG plasmid from severely attenuated Dugway isolates, suggesting that the presence of specific effectors correlates with decreased virulence. These results further support the idea of a critical role for extrachromosomal elements in C. burnetii pathogenesis.  相似文献   
918.
In the low-G+C-content Gram-positive bacteria, resistance to antimicrobial peptides is often mediated by so-called resistance modules. These consist of a two-component system and an ATP-binding cassette transporter and are characterized by an unusual mode of signal transduction where the transporter acts as a sensor of antimicrobial peptides, because the histidine kinase alone cannot detect the substrates directly. Thus, the transporters fulfill a dual function as sensors and detoxification systems to confer resistance, but the mechanistic details of these processes are unknown. The paradigm and best-understood example for this is the BceRS-BceAB module of Bacillus subtilis, which mediates resistance to bacitracin, mersacidin, and actagardine. Using a random mutagenesis approach, we here show that mutations that affect specific functions of the transporter BceAB are primarily found in the C-terminal region of the permease, BceB, particularly in the eighth transmembrane helix. Further, we show that while signaling and resistance are functionally interconnected, several mutations could be identified that strongly affected one activity of the transporter but had only minor effects on the other. Thus, a partial genetic separation of the two properties could be achieved by single amino acid replacements, providing first insights into the signaling mechanism of these unusual modules.  相似文献   
919.
920.
Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号