首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23307篇
  免费   2250篇
  国内免费   16篇
  2022年   240篇
  2021年   501篇
  2020年   269篇
  2019年   347篇
  2018年   434篇
  2017年   355篇
  2016年   510篇
  2015年   989篇
  2014年   994篇
  2013年   1355篇
  2012年   1710篇
  2011年   1689篇
  2010年   1051篇
  2009年   954篇
  2008年   1279篇
  2007年   1317篇
  2006年   1179篇
  2005年   1239篇
  2004年   1176篇
  2003年   1074篇
  2002年   1090篇
  2001年   228篇
  2000年   165篇
  1999年   273篇
  1998年   295篇
  1997年   189篇
  1996年   176篇
  1995年   177篇
  1994年   156篇
  1993年   180篇
  1992年   166篇
  1991年   151篇
  1990年   135篇
  1989年   166篇
  1988年   159篇
  1987年   135篇
  1986年   125篇
  1985年   151篇
  1984年   153篇
  1983年   151篇
  1982年   192篇
  1981年   201篇
  1980年   148篇
  1979年   123篇
  1978年   147篇
  1977年   108篇
  1976年   107篇
  1975年   97篇
  1974年   105篇
  1973年   89篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Habitat loss is one of the main threats to wildlife. Therefore, knowledge of habitat use and preference is essential for the design of conservation strategies and identification of priority sites for the protection of endangered species. The yellow‐tailed woolly monkey (Lagothrix flavicauda Humboldt, 1812), categorized as Critically Endangered on the IUCN Red List, is endemic to montane forests in northern Peru where its habitat is greatly threatened. We assessed how habitat use and preference in L. flavicauda are linked to forest structure and composition. The study took place near La Esperanza, in the Amazonas region, Peru. Our objective was to identify characteristics of habitat most utilized by L. flavicauda to provide information that will be useful for the selection of priority sites for conservation measures. Using presence records collected from May 2013 to February 2014 for one group of L. flavicauda, we classified the study site into three different use zones: low‐use, medium‐use, and high‐use. We assessed forest structure and composition for all use zones using 0.1 ha Gentry vegetation transects. Results show high levels of variation in plant species composition across the three use zones. Plants used as food resources had considerably greater density, dominance, and ecological importance in high‐use zones. High‐use zones presented similar structure to medium‐ and low‐use zones; thus it remains difficult to assess the influence of forest structure on habitat preference. We recommend focusing conservation efforts on areas with a similar floristic composition to the high‐use zones recorded in this study and suggest utilizing key alimentation species for reforestation efforts.  相似文献   
12.
The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) is a potent counter-defense and pathogenicity factor that inhibits antiviral silencing by titration of short double-stranded RNAs. It also disrupts microRNA-mediated regulation of host gene expression by binding ARGONAUTE 1 (AGO1). But in Arabidopsis thaliana complete inhibition of AGO1 is counterproductive to CMV since this triggers another layer of antiviral silencing mediated by AGO2, de-represses strong resistance against aphids (the insect vectors of CMV), and exacerbates symptoms. Using confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation assays we found that the CMV 1a protein, a component of the viral replicase complex, regulates the 2b-AGO1 interaction. By binding 2b protein molecules and sequestering them in P-bodies, the 1a protein limits the proportion of 2b protein molecules available to bind AGO1, which ameliorates 2b-induced disease symptoms, and moderates induction of resistance to CMV and to its aphid vector. However, the 1a protein-2b protein interaction does not inhibit the ability of the 2b protein to inhibit silencing of reporter gene expression in agroinfiltration assays. The interaction between the CMV 1a and 2b proteins represents a novel regulatory system in which specific functions of a VSR are selectively modulated by another viral protein. The finding also provides a mechanism that explains how CMV, and possibly other viruses, modulates symptom induction and manipulates host-vector interactions.  相似文献   
13.
14.
Evaluation of the relationships between muscle structure and digging function in fossorial species is limited. Badgers and other fossorial specialists are expected to have massive forelimb muscles with long fascicles capable of substantial shortening for high power and applying high out‐force to the substrate. To explore this hypothesis, we quantified muscle architecture in the thoracic limb of the American badger (Taxidea taxus) and estimated the force, power, and joint torque of its intrinsic musculature in relation to the use of scratch‐digging behavior. Architectural properties measured were muscle mass, belly length, fascicle length, pennation angle, and physiological cross‐sectional area. Badgers possess hypertrophied shoulder flexors/humeral retractors, elbow extensors, and digital flexors. The triceps brachii is particularly massive and has long fascicles with little pennation, muscle architecture consistent with substantial shortening capability, and high power. A unique feature of badgers is that, in addition to elbow joint extension, two biarticular heads (long and medial) of the triceps are capable of applying high torques to the shoulder joint to facilitate retraction of the forelimb throughout the power stroke. The massive and complex digital flexors show relatively greater pennation and shorter fascicle lengths than the triceps brachii, as well as compartmentalization of muscle heads to accentuate both force production and range of shortening during flexion of the carpus and digits. Muscles of most functional groups exhibit some degree of specialization for high force production and are important for stabilizing the shoulder, elbow, and carpal joints against high limb forces generated during powerful digging motions. Overall, our findings support the hypothesis and indicate that forelimb muscle architecture is consistent with specializations for scratch‐digging. Quantified muscle properties in the American badger serve as a comparator to evaluate the range of diversity in muscle structure and contractile function that exists in mammals specialized for fossorial habits. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
15.
Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow.  相似文献   
16.
17.
18.
Despite recent rapid increases in the occurrence of nonindigenous marine organisms in the marine environment, few studies have critically examined the invasion process for a marine species. Here we use manipulative experiments to examine processes of invasion for the Asian kelp Undaria pinnatifida (Harvey) Suringar at two sites on the east coast of Tasmania. Disturbance to reduce cover of the native algal canopy was found to be critical in the establishment of U. pinnatifida, while the presence of a stable native algal canopy inhibited invasion. In the first sporophyte growth season following disturbance of the canopy, U. pinnatifida recruited in high densities (up to 19 plants m−2) while remaining rare or absent in un-manipulated plots. The timing of disturbance was also important. U. pinnatifida recruited in higher densities in plots where the native canopy was removed immediately prior to the sporophyte growth season (winter 2000), compared with plots where the canopy was removed 6 months earlier during the period of spore release (spring 1999). Removal of the native canopy also resulted in a significant increase in cover of sediment on the substratum. In the second year following canopy removal, U. pinnatifida abundance declined significantly, associated with a substantial recovery of native canopy-forming species. A feature of the recovery of the native algal canopy was a significant shift in species composition. Species dominant prior to canopy removal showed little if any signs of recovery. The recovery was instead dominated by canopy-forming species that were either rare or absent in the study areas prior to manipulation of the canopy.  相似文献   
19.
Influenza serology has traditionally relied on techniques such as hemagglutination inhibition, microneutralization, and ELISA. These assays are complex, challenging to implement in a format allowing detection of several types of antibody-analyte interactions at once (multiplex), and troublesome to implement in the field. As an alternative, we have developed a hemagglutinin microarray on the Arrayed Imaging Reflectometry (AIR) platform. AIR provides sensitive, rapid, and label-free multiplex detection of targets in complex analyte samples such as serum. In preliminary work, we demonstrated the application of this array to the testing of human samples from a vaccine trial. Here, we report the application of an expanded label-free hemagglutinin microarray to the analysis of avian serum samples. Samples from influenza virus challenge experiments in mallards yielded strong, selective detection of antibodies to the challenge antigen in most cases. Samples acquired in the field from mallards were also analyzed, and compared with viral hemagglutinin inhibition and microneutralization assays. We find that the AIR hemagglutinin microarray can provide a simple and robust alternative to standard methods, offering substantially greater information density from a simple workflow.  相似文献   
20.
Orientation of optically nonlinear organic molecules inside sol-gel matrices upon application of an external D.C. electrical field is demonstrated for the first time. The quadratic nonlinear response of silicon oxide or transition metal oxide based gels containing organic molecules has been determined from Electric Field Induced Second Harmonic (EFISH) measurements. Large concentrations of Optically Nonlinear Organic Molecules (ONOM) have been either incorporated inside the macromolecular network or chemically bonded to the oxide backbone of the gels. These results demonstrate the feasibility of permanently poled doped sol-gel matrices. Moreover, EFISH measurements performed on organic molecules appear to be a useful tool for monitoring the changes occurring during sol-gel transformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号