首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20873篇
  免费   2072篇
  国内免费   16篇
  2022年   118篇
  2021年   429篇
  2020年   232篇
  2019年   303篇
  2018年   386篇
  2017年   308篇
  2016年   451篇
  2015年   877篇
  2014年   855篇
  2013年   1179篇
  2012年   1500篇
  2011年   1450篇
  2010年   910篇
  2009年   826篇
  2008年   1160篇
  2007年   1185篇
  2006年   1096篇
  2005年   1140篇
  2004年   1075篇
  2003年   999篇
  2002年   1008篇
  2001年   214篇
  2000年   154篇
  1999年   253篇
  1998年   269篇
  1997年   178篇
  1996年   165篇
  1995年   155篇
  1994年   147篇
  1993年   169篇
  1992年   155篇
  1991年   144篇
  1990年   133篇
  1989年   159篇
  1988年   153篇
  1987年   130篇
  1986年   122篇
  1985年   144篇
  1984年   142篇
  1983年   138篇
  1982年   185篇
  1981年   191篇
  1980年   142篇
  1979年   119篇
  1978年   137篇
  1977年   101篇
  1976年   105篇
  1975年   89篇
  1974年   99篇
  1973年   84篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
131.
Mouse cortical synaptosomal structure and function are altered when exposed to hypoxanthine/xanthine oxidase (HPX/XOD)-generated active oxygen/free radical species. The structure of both the synaptic vesicle and plasma membrane systems are altered by HPX/XOD treatment. The alteration of synaptic vesicle structure is exhibited by a significant increase in the cumulative length of nonsynaptic vesicle membrane per nerve terminal. With respect to the nerve terminal plasma membrane, the length of the perimeter of the synaptosome is increased as the membrane pulls away from portions of the terminal in blebs. The functional lesion generated by HPX/XOD treatment results in a reduction in selective high-affinity gamma-[14C]aminobutyric acid (GABA) uptake. Kinetic analysis of the reduction in high-affinity uptake reveals that the Vmax is significantly altered whereas the Km is not. Preincubation with specific active oxygen/free radical scavengers indicates that the super-oxide radical is directly involved. This radical, most probably in the protonated perhydroxyl form, initiates lipid peroxidative damage of the synaptosomal membrane systems. Low-affinity [14C]GABA transport is unaltered by the HPX/XOD treatment. The apparent ineffectiveness of free radical exposure on low-affinity [14C]GABA transport coupled with its effectiveness in reducing high-affinity transport supports the idea that two separate and different amino acid uptake systems exist in CNS tissue, with the high-affinity being more sensitive (lipid-dependent) and/or more energy-dependent (Na+,K+-ATPase) than the low-affinity system.  相似文献   
132.
The cellular characteristics of the beta-adrenoreceptor in glial and neuronal cells from the newborn rat brain were determined by (-)-[125I]iodocyanopindolol binding. In membranes from both cell types, the binding was saturable and from competition assays the potency series of (-)-isoproterenol greater than (-)-epinephrine = (-)-norepinephrine greater than (+)-isoproterenol was observed. 5'-Guanylyl-imidodiphosphate reduced the affinity of (-)-isoproterenol for the beta-adrenoreceptor from glial cells but had no effect on agonist affinity in neuronal cells. Chronic treatment of both cell types with (-)-isoproterenol reduced the receptor content and the capacity of the agonist to increase the cellular cyclic AMP content. However, the receptor recovery after chronic agonist treatment was faster in glial cells (72 h) than neuronal cells (120 h) and was blocked by cycloheximide. Treatment of both types with the irreversible beta-blocker bromoacetylalprenololmentane (2 microM) reduced the receptor content by 78% but no receptor recovery was observed for 120 h after the initial receptor loss. The data indicated that the majority of beta-adrenoreceptors in both cell types are the beta-1 subtype, but show some differences in receptor-agonist interactions. Furthermore, these CNS cells may be useful models for regulatory studies on the beta-adrenoreceptor.  相似文献   
133.
134.
A reduction in the viability of cowpea rhizobia was observed when Rhizobium trifolii IARI and cowpea Rhizobium strain 3824 were inoculated together in soil. The reduction in number of cowpea rhizobia in soil was found to be associated with the reduction in number of nodules per plant and retardation in plant growth. An antimicrobial substance was isolated from R. trifolii which, on electron microscopic investigation, demonstrated the presence of several phage-like structures.  相似文献   
135.
Summary In the isolated bullfrog cornea, three calcium channel antagonists had dose-dependent inhibitory effects on the Cl-originated short-circuit current (SCC). Their order of decreasing potency was bepridil, verapamil and diltiazem. One millimolar diltiazem inhibited the SCC by 98% and subsequent incubation with the calcium ionophore A23187 had no restorative effect. Increasing the bathing solution Ca concentration from 0.05 to 15mm, however, decreased diltiazem's inhibitory efficacy. This antagonist depolarized the intracellular potential differenceV m from –54 to –18 mV (tear: reference) and the voltage divider ratioFR 0 decreased from 0.58 to 0.30, suggesting an increase in basolateral membrane electrical resistance. Additional indication of a basolateral membrane effect by the drug was that preincubation with 105 m amphotericin B in Cl-free Ringer's did not eliminate the inhibitory effect of the drug on the Na- and K-elicited SCC. In the absence of amphotericin B in Cl-free Ringer's (SCC=0), 1 ×103 m diltiazem depolarized theV m from –78 to –9 mV suggesting that the increase in basolateral membrane resistance was due to K channel blockade. Diltiazem (1×103 m) significantly decreased cyclic AMP content; however, isoproterenol in the presence of the drug increased cyclic AMP fourfold without having any restorative effect on the inhibited SCC. Therefore, the inhibition of the Cl-originated SCC resulting from an increase in basolateral membrane K resistance is not caused by a decline in cyclic AMP content. In plasma membrane-enriched fractions prepared from broken cell preparations of bovine corneal epithelium, 1×103 m diltiazem had no inhibitory effects on either Na,K-ATPase or Ca,Mg-ATPase activities. These latter effects further point to the selectivity of diltiazem as an inhibitor of K-channel activity, but do not preclude a Ca-channel blocker effect by the drug in the micromolar range.  相似文献   
136.
Summary Dysgenic hybrids of Drosophila melanogaster were screened for the induction of mutations in the Y chromosomal fertility genes. Out of 2,417 Y chromosomes analysed 13 male steriles (ms (Y)) were isolated. This high rate of mutation is most probably due to the unusually large physical size of the fertility genes.  相似文献   
137.
138.
Two unicellular marine algae cultured in media containing sodium selenite were examined for glutathione peroxidase activity. The 400 g supernatant from disrupted cells of both the green alga Dunaliella primolecta and the red alga Porphyridium cruentum were able to enhance both the H2O2 and the tert-butyl hydroperoxide dependent oxidation of glutathione. The glutathione peroxidation activity of D. primolecta was reduced only slightly by heating the 400 g supernatant, a 30% decrease in the rate with H2O2 and 10% decrease in the rate with t-BuOOH being observed. Heating caused the H2O2 dependent activity in P. cruentum to be reduced by only 30%, but the activity with t-BuOOH was reduced by 90%. Freezing decreased the t-BuOOH dependent activity of P. cruentum by 90%, but did not lower the t-BuOOH dependent activity of D. primolecta or the H2O2 dependent activity of either alga. It was concluded that the heat and cold stable, glutathione peroxidation was non-enzymatic in nature. A variety of small molecules (ascorbate, Cu(NO3)2, selenocystine, dimethyldiselenide and selenomethionine) were shown to be able to enhance the hydroperoxide dependent oxidation of glutathione in the assay system employed in this study. Such compounds could be responsible for the activity observed in algae. The heat and cold labile t-BuOOH reductase activity of P. cruentumwas possibly enzymatic, but was not attributable to the presence of glutathione-S-transferase. Both algae, when cultured in the presence of added selenite, displayed an approximate doubling of the non-enzymatic H2O2 and t-BuOOH dependent glutathione oxidase activities. The heat and cold labile t-BuOOH reductase activity of P. cruentum was unaltered when the alga was grown in the presence of added selenite. These observations are consistent with the hypothesis that selenium compounds present in the algae are responsible for the selenium induced glutathione peroxidation.  相似文献   
139.
The posttranslational processing of the asparagine-linked oligosaccharide chain of the major myelin glycoprotein (P0) by Schwann cells was evaluated in the permanently transected, adult rat sciatic nerve, where there is no myelin assembly, and in the crush injured nerve, where there is myelin assembly. Pronase digestion of acrylamide gel slices containing the in vitro labeled [3H]mannose and [3H]fucose P0 after electrophoresis permitted analysis of the glycopeptides by lectin affinity and gel filtration chromatography. The concanavalin A-Separose profile of the [3H]mannose P0 glycopeptides from the transected nerve revealed the high-mannose-type oligosaccharide as the predominant species (72.9%), whereas the normally expressed P0 glycoprotein that is assembled into the myelin membrane in the crushed nerve contains 82.9-91.9% of the [3H]mannose radioactivity as the complex-type oligosaccharide chain. Electrophoretic analysis of immune precipitates verified the [3H]mannose as being incorporated into P0 for both the transected and crushed nerve. The high-mannose-type glycopeptides of the transected nerve isolated from the concanavalin A-Sepharose column were hydrolyzed by endo-beta-N-acetylglucosaminidase H, and the oligosaccharides were separated on Biogel P4. Man8GlcNAc and Man7GlcNAc were the predominant species with radioactivity ratios of 12.5/7.2/1.4/1.0 for the Man8, Man7, Man6, and Man5 oligosaccharides, respectively. Jack bean alpha-D-mannosidase gave the expected yields of free Man and ManGlcNAc from these high-mannose-type oligosaccharides. The data support the notion that at least two alpha-1,2-mannosidases are responsible for converting Man9GlcNAc2 to Man5GlcNAc2. The present experiments suggest distinct roles for each mannosidase and that the second mannosidase (I-B) may be an important rate-limiting step in the processing of this glycoprotein with the resulting accumulation of Man8GlcNAc2 and Man7GlcNAc2 intermediates. Pulse chase experiments, however, demonstrated further processing of this high-mannose-type oligosaccharide in the transected nerve. The [3H]mannose P0 glycoprotein with Mr of 27,700 having the predominant high-mannose-type oligosaccharide shifted its Mr to 28,500 with subsequent chase. This band at 28,500 was shown to have the complex-type oligosaccharide chain and to contain fucose attached to the core asparagine-linked GlcNAc residue. The extent of oligosaccharide processing of this down-regulated glycoprotein remains to be determined.  相似文献   
140.
A purification procedure for rat brain phosphatidylinositol synthetase (PI synthetase; CDP-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase; EC 2.7.8.11) is described. The enzyme was purified 200-250-fold from the homogenate by solubilization with Triton X-100 from microsomal membranes and affinity chromatography on CDP-diacylglycerol-Sepharose. Elution of enzyme activity required the presence of Triton X-100, CDP-diacylglycerol, and either phosphatidylcholine or asolectin. The product that was obtained in 5-10% yield from whole brain and in 70% yield from the microsomal fraction contained three protein bands as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The final preparation contained levels of CDP-diacylglycerol hydrolase and CDP-diacylglycerol: sn-glycero-3-phosphate 3-phosphatidyltransferase activities that were less than 1% of PI synthetase activity. The purified enzyme displayed a pH optimum of 8.5-9.0, required either Mg2+ or Mn2+ and exhibited a Km of 4.6 mM for myo-inositol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号