首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34300篇
  免费   3512篇
  国内免费   20篇
  37832篇
  2022年   298篇
  2021年   594篇
  2020年   339篇
  2019年   414篇
  2018年   513篇
  2017年   445篇
  2016年   669篇
  2015年   1220篇
  2014年   1300篇
  2013年   1757篇
  2012年   2118篇
  2011年   2061篇
  2010年   1329篇
  2009年   1143篇
  2008年   1649篇
  2007年   1746篇
  2006年   1585篇
  2005年   1646篇
  2004年   1553篇
  2003年   1418篇
  2002年   1471篇
  2001年   621篇
  2000年   553篇
  1999年   594篇
  1998年   441篇
  1997年   329篇
  1996年   314篇
  1995年   282篇
  1994年   294篇
  1993年   299篇
  1992年   395篇
  1991年   381篇
  1990年   374篇
  1989年   378篇
  1988年   376篇
  1987年   374篇
  1986年   306篇
  1985年   352篇
  1984年   327篇
  1983年   317篇
  1982年   330篇
  1981年   322篇
  1980年   268篇
  1979年   292篇
  1978年   301篇
  1977年   233篇
  1976年   235篇
  1975年   227篇
  1974年   242篇
  1972年   216篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.

Background

Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process.

Methodology/Principal Findings

We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion.

Conclusions/Significance

Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.  相似文献   
972.
973.
Glycans play key roles in host-pathogen interactions; thus, knowing the N-glycomic repertoire of a pathogen can be helpful in deciphering its methods of establishing and sustaining a disease. Therefore, we sought to elucidate the glycomic potential of the facultative amoebal parasite Acanthamoeba. This is the first study of its asparagine-linked glycans, for which we applied biochemical tools and various approaches of mass spectrometry. An initial glycomic screen of eight strains from five genotypes of this human pathogen suggested, in addition to the common eukaryotic oligomannose structures, the presence of pentose and deoxyhexose residues on their N-glycans. A more detailed analysis was performed on the N-glycans of a genotype T11 strain (4RE); fractionation by HPLC and tandem mass spectrometric analyses indicated the presence of a novel mannosylfucosyl modification of the reducing terminal core as well as phosphorylation of mannose residues, methylation of hexose and various forms of pentosylation. The largest N-glycan in the 4RE strain contained two N-acetylhexosamine, thirteen hexose, one fucose, one methyl, and two pentose residues; however, in this and most other strains analyzed, glycans with compositions of Hex8–9HexNAc2Pnt0–1 tended to dominate in terms of abundance. Although no correlation between pathogenicity and N-glycan structure can be proposed, highly unusual structures in this facultative parasite can be found which are potential virulence factors or therapeutic targets.  相似文献   
974.
The Great American Biotic Interchange (GABI) is zoogeographic event characterized by the exchange of taxa between North and South America, typically associated with the rise of the Isthmus of Panama in the late Pliocene. Recent geologic evidence suggests the connections between North and South America may be much older, and that the interchange of organisms between the two continents could have therefore happened much earlier than 3 Ma. Most of the research investigating the GABI has come from tropical vertebrate taxa; little work has been done on invertebrates or on non‐tropical species. To investigate how the GABI shaped the distribution of arid‐adapted species, particularly those with amphitropical distributions (i.e. taxa found in South and North American xeric regions yet absent from the tropics), we examine the historical biogeography of the bee genus Diadasia using a hypothesis of Diadasia phylogenetic relationships. Nuclear and mitochondrial genetic loci are used to reconstruct a phylogeny of Diadasia, which is then used to estimate divergence dates and reconstruct ancestral area relationships. Our analyses suggest the divergence between North and South American Diadasia species occurred between 20.5 and 15 Ma, long before the formation of the Isthmus of Panama. This study is the first to show a Miocene connection for an amphitropically‐distributed insect group. It suggests that the biotic connection between continents is more complicated than previously thought and may have initiated long before the late Pliocene.  相似文献   
975.
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system caused by binding of anti-aquaporin-4 (AQP4) autoantibodies (NMO-IgG) to AQP4 on astrocytes. A screen was developed to identify inhibitors of NMO-IgG-dependent, complement-dependent cytotoxicity. Screening of 50,000 synthetic small molecules was done using CHO cells expressing human AQP4 and a human NMO recombinant monoclonal antibody (rAb-53). The screen yielded pyrano[2,3-c]pyrazoles that blocked rAb-53 binding to AQP4 and prevented cytotoxicity in cell culture and spinal cord slice models of NMO. Structure-activity analysis of 82 analogs yielded a blocker with IC50 ∼ 6 μm. Analysis of the blocker mechanism indicated idiotype specificity, as (i) pyrano[2,3-c]pyrazoles did not prevent AQP4 binding or cytotoxicity of other NMO-IgGs, and (ii) surface plasmon resonance showed specific rAb-53 binding. Antibody structure modeling and docking suggested a putative binding site near the complementarity-determining regions. Small molecules with idiotype-specific antibody targeting may be useful as research tools and therapeutics.  相似文献   
976.
XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.  相似文献   
977.
Understanding the drivers of phenological events is vital for forecasting species’ responses to climate change. We developed flexible Bayesian survival regression models to assess a 29‐year, individual‐level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensis, Prunus jamasakura, and Prunus lannesiana), from the Tama Forest Cherry Preservation Garden in Hachioji, Japan. Our modeling framework used time‐varying (chill and heat units) and time‐invariant (slope, aspect, and elevation) factors. We found limited differences among taxa in sensitivity to chill, but earlier flowering taxa, such as P. spachiana, were more sensitive to heat than later flowering taxa, such as P. lannesiana. Using an ensemble of three downscaled regional climate models under the A1B emissions scenario, we projected shifts in flowering timing by 2100. Projections suggest that each taxa will flower about 30 days earlier on average by 2100 with 2–6 days greater uncertainty around the species mean flowering date. Dramatic shifts in the flowering times of cherry trees may have implications for economically important cultural festivals in Japan and East Asia. The survival models used here provide a mechanistic modeling approach and are broadly applicable to any time‐to‐event phenological data, such as plant leafing, bird arrival time, and insect emergence. The ability to explicitly quantify uncertainty, examine phenological responses on a fine time scale, and incorporate conditions leading up to an event may provide future insight into phenologically driven changes in carbon balance and ecological mismatches of plants and pollinators in natural populations and horticultural crops.  相似文献   
978.
CD148 is a receptor-like protein tyrosine phosphatase expressed on a wide variety of cell types. Through the use flow cytometry and immunofluorescence microscopy on tissue sections, we examined the expression of CD148 on multiple murine hemopoietic cell lineages. We found that CD148 is moderately expressed during all stages of B cell development in the bone marrow, as well as peripheral mature B cells. In contrast, CD148 expression on thymocytes and mature T cells is substantially lower. However, stimulation of peripheral T cells through the TCR leads to an increase of CD148 expression. This up-regulation on T cells can be partially inhibited by reagents that block the activity of src family kinases, calcineurin, MEK, or PI3K. Interestingly, CD148 levels are elevated on freshly isolated T cells from MRL lpr/lpr and CTLA-4-deficient mice, two murine models of autoimmunity. Together, these expression data along with previous biochemical data suggest that CD148 may play an important regulatory role to control an immune response.  相似文献   
979.
The peptide transmitter N-acetylaspartylglutamate (NAAG) is present in millimolar concentrations in mammalian spinal cord. Data from the rat peripheral nervous system suggest that this peptide is synthesized enzymatically, a process that would be unique for mammalian neuropeptides. To test this hypothesis in the mammalian CNS, rat spinal cords were acutely isolated and used to study the incorporation of radiolabeled amino acids into NAAG. Consistent with the action of a NAAG synthetase, inhibition of protein synthesis did not affect radiolabel incorporation into NAAG. Depolarization of spinal cords stimulated incorporation of radiolabel. Biosynthesis of NAAG by cortical astrocytes in cell culture was demonstrated by tracing incorporation of [3H]-glutamate by astrocytes. In the first test of the hypothesis that NAA is an immediate precursor in NAAG biosynthesis, [3H]-NAA was incorporated into NAAG by isolated spinal cords and by cell cultures of cortical astrocytes. Data from cerebellar neurons and glia in primary culture confirmed the predominance of neuronal synthesis and glial uptake of NAA, leading to the hypothesis that while neurons synthesize NAA for NAAG biosynthesis, glia may take it up from the extracellular space. However, cortical astrocytes in serum-free low-density cell culture incorporated [3H]-aspartate into NAAG, a result indicating that under some conditions these cells may also synthesize NAA. Pre-incubation of isolated spinal cords and cultures of rat cortical astrocytes with unlabeled NAA increased [3H]-glutamate incorporation into NAAG. In contrast, [3H]-glutamine incorporation in spinal cord was not stimulated by unlabeled NAA. These results are consistent with the glutamate-glutamine cycle greatly favoring uptake of glutamine into neurons and glutamate by glia and suggest that NAA availability may be rate-limiting in the synthesis of NAAG by glia under some conditions.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号