首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24080篇
  免费   2381篇
  国内免费   19篇
  26480篇
  2023年   95篇
  2022年   270篇
  2021年   523篇
  2020年   303篇
  2019年   391篇
  2018年   472篇
  2017年   392篇
  2016年   586篇
  2015年   1075篇
  2014年   1047篇
  2013年   1411篇
  2012年   1837篇
  2011年   1741篇
  2010年   1093篇
  2009年   977篇
  2008年   1358篇
  2007年   1395篇
  2006年   1243篇
  2005年   1288篇
  2004年   1223篇
  2003年   1111篇
  2002年   1103篇
  2001年   229篇
  2000年   156篇
  1999年   266篇
  1998年   279篇
  1997年   188篇
  1996年   169篇
  1995年   160篇
  1994年   152篇
  1993年   174篇
  1992年   158篇
  1991年   154篇
  1990年   136篇
  1989年   163篇
  1988年   157篇
  1987年   137篇
  1986年   129篇
  1985年   149篇
  1984年   145篇
  1983年   138篇
  1982年   186篇
  1981年   192篇
  1980年   142篇
  1979年   115篇
  1978年   137篇
  1977年   104篇
  1976年   107篇
  1975年   90篇
  1974年   98篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
991.
Rho GTPases regulate multiple cellular processes affecting both cell proliferation and cytoskeletal dynamics. Their cycling between inactive GDP- and active GTP-bound states is tightly regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We have previously identified CdGAP (for Cdc42 GTPase-activating protein) as a specific GAP for Rac1 and Cdc42. CdGAP consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP is a member of the impressively large number of mammalian RhoGAP proteins that is well conserved among both vertebrates and invertebrates. In mice, we find two predominant isoforms of CdGAP differentially expressed in specific tissues. We report here that CdGAP is highly phosphorylated in vivo on serine and threonine residues. We find that CdGAP is phosphorylated downstream of the MEK-extracellular signal-regulated kinase (ERK) pathway in response to serum or platelet-derived growth factor stimulation. Furthermore, CdGAP interacts with and is phosphorylated by ERK-1 and RSK-1 in vitro. A putative DEF (docking for ERK FXFP) domain located in the proline-rich region of CdGAP is required for efficient binding and phosphorylation by ERK1/2. We identify Thr776 as an in vivo target site of ERK1/2 and as an important regulatory site of CdGAP activity. Together, these data suggest that CdGAP is a novel substrate of ERK1/2 and mediates cross talk between the Ras/mitogen-activated protein kinase pathway and regulation of Rac1 activity.  相似文献   
992.
Glucoamylase (E.C: 3.2.1.3, alpha-(1-->4)-glucan glucohydrolase) mainly hydrolyzes starch and has been extensively used in the starch, glucose (dextrose), and fermentation industries. Immobilized glucoamylase has an inherent disadvantage of lower conversion rates and low thermostability of less than 55 degrees C when used in continuous operations. We have developed crosslinked enzyme crystals (CLEC) of glucoamylase that overcome the above disadvantages, possess good thermal stability and retain 98.6% of their original activity at 70 degrees C for 1h, 77% activity at 80 degrees C for 1h, and 51.4% activity at 90 degrees C for 0.5h. CLEC glucoamylase has a specific activity of 0.0687 IU/mg and a yield of 50.7% of the original activity of the enzyme under optimum conditions with starch as the substrate. The crystals obtained are rhombohedral in shape having a size approximately 10-100 microm, a density of 1.8926 g/cm(3) and a surface area of 0.7867 m(2)/g. The pH optimum of the glucoamylase crystals was sharp at pH 4.5, unlike the soluble enzyme. The kinetic constants V(max) and K(m) exhibited a 10-fold increase as a consequence of crystallization and crosslinking. The continuous production of glucose from 10% soluble starch and 10% maltodextrin (12.5 DE) by a packed-bed reactor at 60 degrees C had a productivity of 110.58 g/L/h at a residence time of 7.6 min and 714.1g/L/h at a residence time of 3.4 min, respectively. The CLEC glucoamylase had a half-life of 10h with 4% starch substrate at 60 degrees C.  相似文献   
993.
994.
The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions.  相似文献   
995.
Nitric oxide (NO) has been demonstrated to mediate events during ovulation, pregnancy, blastocyst invasion and preimplantation embryogenesis. However, less is known about the role of NO during postimplantation development. Therefore, in this study, we explored the effects of NO during vascular development of the murine yolk sac, which begins shortly after implantation. Establishment of the vitelline circulation is crucial for normal embryonic growth and development. Moreover, functional inactivation of the endodermal layer of the yolk sac by environmental insults or genetic manipulations during this period leads to embryonic defects/lethality, as this structure is vital for transport, metabolism and induction of vascular development. In this study, we describe the temporally/spatially regulated distribution of nitric oxide synthase (NOS) isoforms during the three stages of yolk sac vascular development (blood island formation, primary capillary plexus formation and vessel maturation/remodeling) and found NOS expression patterns were diametrically opposed. To pharmacologically manipulate vascular development, an established in vitro system of whole murine embryo culture was employed. During blood island formation, the endoderm produced NO and inhibition of NO (L-NMMA) at this stage resulted in developmental arrest at the primary plexus stage and vasculopathy. Furthermore, administration of a NO donor did not cause abnormal vascular development; however, exogenous NO correlated with increased eNOS and decreased iNOS protein levels. Additionally, a known environmental insult (high glucose) that produces reactive oxygen species (ROS) and induces vasculopathy also altered eNOS/iNOS distribution and induced NO production during yolk sac vascular development. However, administration of a NO donor rescued the high glucose induced vasculopathy, restored the eNOS/iNOS distribution and decreased ROS production. These data suggest that NO acts as an endoderm-derived factor that modulates normal yolk sac vascular development, and decreased NO bioavailability and NO-mediated sequela may underlie high glucose induced vasculopathy.  相似文献   
996.
Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1-4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1-4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks.  相似文献   
997.
Tuberculosis continues to be a global health threat, making bicyclic nitroimidazoles an important new class of therapeutics. A deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis catalyzes the reduction of nitroimidazoles such as PA-824, resulting in intracellular release of lethal reactive nitrogen species. The N-terminal 30 residues of Ddn are functionally important but are flexible or access multiple conformations, preventing structural characterization of the full-length, enzymatically active enzyme. Several structures were determined of a truncated, inactive Ddn protein core with and without bound F(420) deazaflavin coenzyme as well as of a catalytically competent homolog from Nocardia farcinica. Mutagenesis studies based on these structures identified residues important for binding of F(420) and PA-824. The proposed orientation of the tail of PA-824 toward the N terminus of Ddn is consistent with current structure-activity relationship data.  相似文献   
998.
The retinoblastoma tumor suppressor (RB) serves as a scaffold to coordinate binding of numerous proteins, including E2F and histone deacetylases, through its C-terminal domain. The amino-terminal half of RB has few known binding partners and its function is not well understood. We used the amino-terminal domain of the Drosophila retinoblastoma tumor suppressor Rbf (RbfN) to identify novel binding partners by immunoprecipitation coupled with mass spectrometry. Our experiment revealed that the RNA-binding protein Squid (Sqd) is a putative interacting partner of RbfN. Western blot confirmed that Sqd interacts with the amino-terminal domain of Rbf. We observed that Sqd colocalizes with RbfN in Drosophila salivary gland cells. We also show that double RNAi knockdown of Rbf and Sqd in the eye results in an extensive loss of eye bristles, suggesting that Rbf and Sqd function in a common pathway. We conclude from our studies that Rbf physically and genetically interacts with Sqd. We propose that the retinoblastoma tumor suppressor may play a novel role in RNA processing through interaction with RNA-binding proteins.  相似文献   
999.
1000.
Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to inject effector proteins directly into the cytosol of mammalian cells where they interfere with signal transduction pathways that regulate actin cytoskeleton dynamics and inflammation, thereby enabling the bacterium to avoid engulfment and destruction by macrophages. Type III secretion normally does not occur in the absence of close contact with eukaryotic cells. Negative regulation is mediated in part by a multiprotein complex that has been proposed to act as a physical impediment to type III secretion by blocking the entrance to the secretion apparatus prior to contact with mammalian cells. This complex is composed of YopN, its heterodimeric secretion chaperone SycN-YscB, and TyeA. Here, we report two crystal structures of YopN in complex with its heterodimeric secretion chaperone SycN-YscB and the co-regulatory protein TyeA, respectively. By merging these two overlapping structures, it was possible to construct a credible theoretical model of the YopN-SycN-YscB-TyeA complex. The modeled assembly features the secretion signaling elements of YopN at one end of an elongated structure and the secretion regulating TyeA binding site at the other. A patch of highly conserved residues on the surface of the C-terminal alpha-helix of TyeA may mediate its interaction with structural components of the secretion apparatus. Conserved arginine residues that reside inside a prominent cavity at the dimer interface of SycN-YscB were mutated in order to investigate whether they play a role in targeting the YopN-chaperone complex to the type III secretion apparatus. One of the mutants exhibited a phenotype that is consistent with this hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号