首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26799篇
  免费   2664篇
  国内免费   17篇
  2022年   237篇
  2021年   483篇
  2020年   267篇
  2019年   330篇
  2018年   449篇
  2017年   371篇
  2016年   555篇
  2015年   1047篇
  2014年   1059篇
  2013年   1474篇
  2012年   1871篇
  2011年   1786篇
  2010年   1114篇
  2009年   1053篇
  2008年   1493篇
  2007年   1536篇
  2006年   1407篇
  2005年   1443篇
  2004年   1407篇
  2003年   1303篇
  2002年   1346篇
  2001年   294篇
  2000年   223篇
  1999年   328篇
  1998年   364篇
  1997年   268篇
  1996年   252篇
  1995年   235篇
  1994年   210篇
  1993年   230篇
  1992年   221篇
  1991年   219篇
  1990年   197篇
  1989年   220篇
  1988年   211篇
  1987年   185篇
  1986年   164篇
  1985年   200篇
  1984年   203篇
  1983年   200篇
  1982年   243篇
  1981年   252篇
  1980年   202篇
  1979年   161篇
  1978年   187篇
  1977年   146篇
  1976年   137篇
  1975年   127篇
  1974年   139篇
  1973年   126篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
63.
The composition of the solution bathing one border of the isolated frog skin affects the response of the potential across the skin to changes in the composition of the solution bathing the opposite border. Increasing the K concentration of the inside (corium) bathing solution decreased the sensitivity of the potential to a change in outside Na concentration. Decreasing the outside Na concentration decreased the sensitivity of the potential to a change in inside K concentration. Increasing the total ionic strength of the outside bathing solution or of both bathing solutions decreased the sensitivity of the potential to a change in outside Na concentration.  相似文献   
64.
Three strains of the bar-eyed mutant of Drosophila melanogaster Meig have been reared at constant temperatures over a range of 15–31°C. The mean facet number in the bar-eyed mutant varies inversely with the temperature at which the larvæ develop. The temperature coefficient (Q10) is of the same order as that for chemical reactions. The facet-temperature relations may be plotted as an exponential curve for temperatures from 15–31°. The rate of development of the immature stages gives a straight line temperature curve between 15 and 29°. Beyond 29° the rate decreases again with a further rise in temperature. The facet curve may be readily superimposed on the development curve between 15 and 27°. The straight line feature of the development curve is probably due to the flattening out of an exponential curve by secondary factors. Since both the straight line and the exponential curve appear simultaneously in the same living material, it is impractical to locate the secondary factors in enzyme destruction, differences in viscosity, or in the physical state of colloids. Differential temperature coefficients for the various separate processes involved in development furnish the best basis for an explanation of the straight line feature of the curve representing the effect of temperature on the rate of physiological processes. Facet number in the full-eyed wild stock is not affected by temperature to a marked degree. The mean facet number for fifteen full-eyed females raised at 27° is 859.06. The mean facet number for the Low Selected Bar females at 27° is 55.13; for the Ultra-bar females at 27° it is 21.27. A consistent sexual difference appears in all the bar stocks, the females having fewer facets. This relation may be expressed by the sex coefficient, the average value of which is 0.791. The average observed difference in mean facet number for a difference of 1°C. in the environment in which the flies developed is 3.09 for the Ultra-bar stock and 14.01 for the Low Selected stock. The average proportional differences in the mean for a difference of 1°C. are 9.22 per cent for Ultra-bar, and 14.51 for Low Selected. The differences in the number of facets per °C. are greatest at the low and least at the high temperatures. The difference in the number of facets per °C. varies with the mean. The proportional differences in the mean per °C. are greatest at the lower (15–17.5°) and higher (29–31°) temperatures and least at the intermediate temperatures. Temperature is a factor in determining facet number only during a relatively short period in larval development. This effective period, at 27°, comes between the end of the 3rd and the end of the 4th day. At 15°, this period is initiated at the end of 8 days following a 1st day at 27°. At 27° this period is approximately 18 hours long. At 15° it is approximately 72 hours long. The number of facets and the length of the immature stage (egg-larval-pupal) appear related when the whole of development is passed at one temperature. That the number of facets is not dependent upon the length of the immature stage is shown by experiments in which only a part of development was passed at one temperature and the remainder at another. Temperature affects the reaction determining the number of facets in approximately the same way that it affects the other developmental reactions, hence the apparent correlation between facet number and the length of the immature stage. Variability as expressed by the coefficient of variability has a tendency to increase with temperature. Standard deviation, on the other hand, appears to decrease with rise in temperature. Neither inheritance nor induction effects are exhibited by this material. This study shows that environment may markedly affect the somatic expression of one Mendelian factor (bar eye), while it has no visible influence on another (white eye).  相似文献   
65.
Two hypotheses of signal specificity in antipredator calls (“referential signalling” and “response urgency”) are discussed in light of prior research on ground squirrels and vervet monkeys. These hypotheses then are examined with data on responses of semi-captive ringtailed and ruffed lemurs to antipredator call playbacks. Although the responses of ringtailed lemurs support a referential-signalling interpretation of their antipredator calls, those of ruffed lemurs do not conform well to either hypothesis. Rather, ruffed lemur antipredator calls seem best viewed as “affective” signals that may only reflect underlying emotional/motivational states.  相似文献   
66.
67.
68.
Anatomical features of Eriastrum densifolium populations in southern California show variation that correlates well with ecological setting and geographical distribution. Vessel element size and density in shoots suggest strong adaptation among different subspecies to efficient water movement in different habitats. Indices of mesomorphy, devised by Carlquist to indicate relative adaptivity of wood, likewise show considerable variation among populations, suggesting that different subspecies have anatomical components that can define them. Relationships among the five subspecies of E. densifolium may be explored through MI value relationships.  相似文献   
69.
Information concerning the chemical state of trace elements in biological systems generally has not been available. Such information for toxic elements and metals in metalloproteins could prove extremely valuable in the elucidation of their metabolism and other biological processes. The shielding of core electrons by binding electrons affect the energy required for creating inner-shell holes. Furthermore, the molecular binding and symmetry of the local environment of an atom affect the absorption spectrum in the neighborhood of the absorption edge. X-ray absorption near-edge structure (XANES) using synchrotron radiation excitation can be used to provide chemical speciation information for trace elements at concentrations as low as 10 ppm. The structure and position of the absorption curve in the region of an edge can yield vital data about the local structure and oxidation state of the trace element in question. Data are most easily interpreted by comparing the observed edge structure and position with those of model compounds of the element covering the entire range of possible oxidation states. Examples of such analyses will be reviewed.  相似文献   
70.
Summary Cucumber seedlings were grown in a Portsmouth soil-sand system to study how varying soil clay and organic matter content might modify cucumber seedling response to ferulic acid, a reported allelopathic agent. Leaf area expansion of cucumber seedlings, soil respiration, and soil solution concentrations of ferulic acid were monitored. Leaf area, mean absolute rates of leaf expansion, and shoot dry weight of cucumber seedlings were significantly reduced by ferulic acid concentrations ranging from 10 to 70 μg/g dry soil. Ferulic acid was applied every other day, since it rapidly disappeared from soil solution as a result of retention by soil particles, utilization by microbes and/or uptake by roots. The amount of ferulic acid retained (i.e., adsorbed, polymerized,etc.) by soil particles appeared to be secondary to microbial utilization and/or uptake by roots. Varying clay (5.3 to 9.8 g/cup) and organic matter (2.0 to 0.04g/cup) contents of the soil appeared to have little impact on the disappearance of ferulic acid from soil solution under “ideal” growth conditions for cucumber seedlings unless larger amounts of ferulic acid were added to the soil; in this case 200 μg/g. The addition of ferulic acid to the soil materials substantially increased the activity of the soil microbes. This latter conclusion is based on recovery of ferulic acid from soil solution and soil respiration measurements. Paper No. 10347 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, N C 27695-7601. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the product named, nor criticism of similar ones not mentioned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号