全文获取类型
收费全文 | 1929篇 |
免费 | 145篇 |
国内免费 | 2篇 |
专业分类
2076篇 |
出版年
2023年 | 29篇 |
2022年 | 12篇 |
2021年 | 26篇 |
2020年 | 49篇 |
2019年 | 53篇 |
2018年 | 45篇 |
2017年 | 45篇 |
2016年 | 65篇 |
2015年 | 108篇 |
2014年 | 127篇 |
2013年 | 150篇 |
2012年 | 179篇 |
2011年 | 142篇 |
2010年 | 95篇 |
2009年 | 86篇 |
2008年 | 108篇 |
2007年 | 111篇 |
2006年 | 106篇 |
2005年 | 104篇 |
2004年 | 81篇 |
2003年 | 77篇 |
2002年 | 85篇 |
2001年 | 22篇 |
2000年 | 11篇 |
1999年 | 19篇 |
1998年 | 16篇 |
1997年 | 22篇 |
1996年 | 16篇 |
1995年 | 15篇 |
1994年 | 12篇 |
1993年 | 10篇 |
1992年 | 12篇 |
1991年 | 7篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1986年 | 3篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 5篇 |
1979年 | 3篇 |
1954年 | 1篇 |
排序方式: 共有2076条查询结果,搜索用时 0 毫秒
31.
- 1 Ants are important generalist predators in most terrestrial ecosystems. However, because many ant species are also hemipteran mutualists, their role in agriculture has generally been considered to be negative for plants.
- 2 In the present study, we report an experiment in ant‐exclusion from tree canopies in an organic citrus grove with two main objectives: (i) to examine whether the absence of ants increased the abundance of some beneficial arthropods and reduced the attack of some pests such as aphids and (ii) to examine whether ant‐exclusion increased the fruit yield of citrus trees.
- 3 The exclusion of ants from tree canopies had positive effects on the arthropod assemblage and on fruit yield. However, the 8‐year duration of the experiment can be divided into two periods with contrasting results. In the first period, the arthropod assemblage was only slightly affected, except for a greater density of aphids in ant‐excluded trees; in addition, fruit yield was higher in ant‐excluded trees than in the control ones. In the second period, ant‐exclusion increased the abundance of most arthropod groups, although the previous positive effect on fruit yield was no longer observed.
- 4 There are two main conclusions of the present study. First, from an applied perspective, ant‐exclusion from tree canopies is not a sound management alternative in citrus plantations in the Mediterranean. Second, the 8‐year duration of the experiment highlighted the importance of long‐term experiments in community ecology and biological control because the effects observed in the first 4 years of the experiment were very different from what occurred subsequently.
32.
Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton 总被引:1,自引:0,他引:1
Phytoplankton and heterotrophic prokaryotes are major components of the microbial food web and interact continuously: heterotrophic prokaryotes utilize the dissolved organic carbon derived from phytoplankton exudation or cell lysis (DOCp), and mineralization by heterotrophic prokaryotes provides inorganic nutrients for phytoplankton. For this reason, these communities are expected to be closely linked, although the study of the interactions between them is still a major challenge. Recent studies have presented interactions between phytoplankton and heterotrophic prokaryotes based on coexistence or covariation throughout a time-series. However, a real quantification of the carbon flow within these networks (defined as the interaction strength, IS) has not been achieved yet. This is critical to understand the selectivity degree of bacteria responding to specific algal DOCp. Here we used microautoradiography to quantify the preferences of the major heterotrophic prokaryote phylogenetic groups on DOC derived from several representative phytoplankton species, and expressed these preferences as an IS value. The distribution of the ISs was not random but rather skewed towards weak interactions, in a similar way as the distributions described for stable complex non-microbial ecosystems, indicating that there are some cases of high specificity on the use of specific algal DOCp by some bacterial groups, but weak interactions are more common and may be relevant as well. The variety of IS patterns observed supports the view that the vast range of different resources (different types of organic molecules) available in the sea selects and maintains the high levels of diversity described for marine bacterioplankton. 相似文献
33.
34.
35.
Capilla E Díaz M Albalat A Navarro I Pessin JE Keller K Planas JV 《American journal of physiology. Endocrinology and metabolism》2004,287(2):E348-E357
Glucose transport across the plasma membrane is mediated by a family of glucose transporter proteins (GLUTs), several of which have been identified in mammalian, avian, and, more recently, in fish species. Here, we report on the cloning of a salmon GLUT from adipose tissue with a high sequence homology to mammalian GLUT4 that has been named okGLUT4. Kinetic analysis of glucose transport following expression in Xenopus laevis oocytes demonstrated a 7.6 +/- 1.4 mM K(m) for 2-deoxyglucose (2-DG) transport measured under zero-trans conditions and 14.4 +/- 1.5 mM by equilibrium exchange of 3-O-methylglucose. Transport of 2-DG by okGLUT4-injected oocytes was stereospecific and was competed by D-glucose, D-mannose, and, to a lesser extent, D-galactose and D-fructose. In addition, 2-DG uptake was inhibited by cytochalasin B and ethylidene glucose. Moreover, insulin stimulated glucose uptake in Xenopus oocytes expressing okGLUT4 and in isolated trout adipocytes, which contain the native form of okGLUT4. Despite differences in protein motifs important for insulin-stimulated translocation of mammalian GLUT4, okGLUT4 was able to translocate to the plasma membrane from intracellular localization sites in response to insulin when expressed in 3T3-L1 adipocytes. These data demonstrate that okGLUT4 is a structural and functional fish homolog of mammalian GLUT4 but with a lower affinity for glucose, which could in part explain the lower ability of fish to clear a glucose load. 相似文献
36.
37.
González-García MP Vilarrasa-Blasi J Zhiponova M Divol F Mora-García S Russinova E Caño-Delgado AI 《Development (Cambridge, England)》2011,138(5):849-859
Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem. 相似文献
38.
39.
Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling 总被引:2,自引:0,他引:2
Jennifer L. Soong Lucia Fuchslueger Sara Maraon‐Jimenez Margaret S. Torn Ivan A. Janssens Josep Penuelas Andreas Richter 《Global Change Biology》2020,26(4):1953-1961
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant‐centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be ‘limited’ by nutrients or carbon alone. Here, we outline how models aimed at predicting non‐steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant–microbe interactions in coupled carbon and nutrient models. 相似文献
40.
Hui Yang Seth M. Munson Chris Huntingford Nuno Carvalhais Alan K. Knapp Xiangyi Li Josep Peñuelas Jakob Zscheischler Anping Chen 《Global Change Biology》2023,29(8):2351-2362
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate. 相似文献