首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1949篇
  免费   142篇
  国内免费   2篇
  2023年   29篇
  2022年   12篇
  2021年   26篇
  2020年   49篇
  2019年   53篇
  2018年   45篇
  2017年   45篇
  2016年   65篇
  2015年   107篇
  2014年   128篇
  2013年   152篇
  2012年   182篇
  2011年   142篇
  2010年   96篇
  2009年   88篇
  2008年   109篇
  2007年   111篇
  2006年   109篇
  2005年   106篇
  2004年   81篇
  2003年   78篇
  2002年   87篇
  2001年   23篇
  2000年   12篇
  1999年   18篇
  1998年   16篇
  1997年   21篇
  1996年   16篇
  1995年   15篇
  1994年   13篇
  1993年   10篇
  1992年   12篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
排序方式: 共有2093条查询结果,搜索用时 15 毫秒
171.
172.
Aim The goals of this study are: (1) to determine whether increasing atmospheric CO2 concentrations and changing climate increased intrinsic water use efficiency (iWUE, as detected by changes in Δ13C) over the last four decades; and if it did increase iWUE, whether it led to increased tree growth (as measured by tree‐ring growth); (2) to assess whether CO2 responses are biome dependent due to different environmental conditions, including availability of nutrients and water; and (3) to discuss how the findings of this study can better inform assumptions of CO2 fertilization and climate change effects in biospheric and climate models. Location A global range of sites covering all major forest biome types. Methods The analysis encompassed 47 study sites including boreal, wet temperate, mediterranean, semi‐arid and tropical biomes for which measurements of tree ring Δ13C and growth are available over multiple decades. Results The iWUE inferred from the Δ13C analyses of comparable mature trees increased 20.5% over the last 40 years with no significant differences between biomes. This increase in iWUE did not translate into a significant overall increase in tree growth. Half of the sites showed a positive trend in growth while the other half had a negative or no trend. There were no significant trends within biomes or among biomes. Main conclusions These results show that despite an increase in atmospheric CO2 concentrations of over 50 p.p.m. and a 20.5% increase in iWUE during the last 40 years, tree growth has not increased as expected, suggesting that other factors have overridden the potential growth benefits of a CO2‐rich world in many sites. Such factors could include climate change (particularly drought), nutrient limitation and/or physiological long‐term acclimation to elevated CO2. Hence, the rate of biomass carbon sequestration in tropical, arid, mediterranean, wet temperate and boreal ecosystems may not increase with increasing atmospheric CO2 concentrations as is often implied by biospheric models and short‐term elevated CO2 experiments.  相似文献   
173.
174.
In most industrialized countries, different epidemiologic studies show that chronic renal failure is dramatically increasing. Such major public health problem is a consequence of acquired systemic diseases such as type II diabetes, which is now the first cause for end stage renal failure. Furthermore, lithogenic diseases may also induce intratubular crystallization, which may finally result in end-stage renal failure (ESRF). Up to now, such rare diseases are often misdiagnosed. In this study, based on twenty four biopsies, we show that SR μFTIR (Synchrotron Radiation-μFourier transform infrared) spectroscopy constitutes a significant opportunity to characterize such pathological μcalcifications giving not only their chemical composition but also their spatial distribution in the tissues. This experimental approach offers new opportunities to the clinicians to describe at the cell level the physico-chemical processes leading to the formation of the pathological calcifications which lead to ESRF.  相似文献   
175.
Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference.  相似文献   
176.
Haun DB  Nawroth C  Call J 《PloS one》2011,6(12):e28801
We investigate decision-making behaviour in all four non-human great ape species. Apes chose between a safe and a risky option across trials of varying expected values. All species chose the safe option more often with decreasing probability of success. While all species were risk-seeking, orangutans and chimpanzees chose the risky option more often than gorillas and bonobos. Hence all four species' preferences were ordered in a manner consistent with normative dictates of expected value, but varied predictably in their willingness to take risks.  相似文献   
177.
178.
Individual bioequivalence is assessed using an extension of the classical structural equation model, known as the error-in-equation model. This procedure estimates the relationship between individual means, as well as the variance-covariance parameters, of the bioavailabilities measurement model, by considering individual means related through a straight line with a random term, whereas the classical structural equation considers a deterministic linear relationship. We discuss the implications of this approach in terms of the bioavailabilities measurement model and how to test the overall hypothesis of individual bioequivalence. Both models are compared in a simulation study and a case example is presented.  相似文献   
179.
BACKGROUND AND AIMS: Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. METHODS: Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. KEY RESULTS: Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. CONCLUSIONS: These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology.  相似文献   
180.
Sec1/Mun18-like (SM) proteins and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play central roles in intracellular membrane fusion. Diverse modes of interaction between SM proteins and SNAREs from the syntaxin family have been described. However, the observation that the N-terminal domains of Sly1 and Vps45, the SM proteins involved in traffic at the endoplasmic reticulum, the Golgi, the trans-Golgi network and the endosomes, bind to similar N-terminal sequences of their cognate syntaxins suggested a unifying theme for SM protein/SNARE interactions in most internal membrane compartments. To further understand this mechanism of SM protein/SNARE coupling, we have elucidated the structure in solution of the isolated N-terminal domain of rat Sly1 (rSly1N) and analyzed its complex with an N-terminal peptide of rat syntaxin 5 by NMR spectroscopy. Comparison with the crystal structure of a complex between Sly1p and Sed5p, their yeast homologues, shows that syntaxin 5 binding requires a striking conformational change involving a two-residue shift in the register of the C-terminal beta-strand of rSly1N. This conformational change is likely to induce a significant alteration in the overall shape of full-length rSly1 and may be critical for its function. Sequence analyses indicate that this conformational change is conserved in the Sly1 family but not in other SM proteins, and that the four families represented by the four SM proteins found in yeast (Sec1p, Sly1p, Vps45p and Vps33p) diverged early in evolution. These results suggest that there are marked distinctions between the mechanisms of action of each of the four families of SM proteins, which may have arisen from different regulatory requirements of traffic in their corresponding membrane compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号