首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2120篇
  免费   152篇
  国内免费   2篇
  2274篇
  2023年   30篇
  2022年   13篇
  2021年   26篇
  2020年   53篇
  2019年   57篇
  2018年   48篇
  2017年   46篇
  2016年   70篇
  2015年   111篇
  2014年   129篇
  2013年   152篇
  2012年   180篇
  2011年   152篇
  2010年   100篇
  2009年   89篇
  2008年   119篇
  2007年   121篇
  2006年   116篇
  2005年   111篇
  2004年   88篇
  2003年   86篇
  2002年   91篇
  2001年   29篇
  2000年   19篇
  1999年   24篇
  1998年   17篇
  1997年   23篇
  1996年   17篇
  1995年   17篇
  1994年   11篇
  1993年   11篇
  1992年   18篇
  1991年   9篇
  1990年   15篇
  1989年   9篇
  1988年   15篇
  1987年   10篇
  1986年   10篇
  1985年   7篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   3篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1964年   1篇
排序方式: 共有2274条查询结果,搜索用时 15 毫秒
841.
Recent studies have suggested that domestic dogs (Canis familiaris) engage in highly complex forms of social learning. Here, we critically assess the potential mechanisms underlying social learning in dogs using two problem‐solving tasks. In a classical detour task, the test dogs benefited from observing a demonstrator walking around a fence to obtain a reward. However, even inexperienced dogs did not show a preference for passing the fence at the same end as the demonstrator. Furthermore, dogs did not need to observe a complete demonstration by a human demonstrator to pass the task. Instead, they were just as successful in solving the problem after seeing a partial demonstration by an object passing by at the end of the fence. In contrast to earlier findings, our results suggest that stimulus enhancement (or affordance learning) might be a powerful social learning mechanism used by dogs to solve such detour problems. In the second task, we examined whether naïve dogs copy actions to solve an instrumental problem. After controlling for stimulus enhancement and other forms of social influence (e.g. social facilitation and observational conditioning), we found that dogs’ problem solving was not influenced by witnessing a skilful demonstrator (either an unknown human, a conspecific or the dog’s owner). Together, these results add to evidence suggesting that social learning may often be explained by relatively simple (but powerful) mechanisms.  相似文献   
842.
Studies on tactical deception have reported that informed subordinates can withhold information from naive dominants, but they have not directly compared species'' performance. Here, we compared the performance in two withholding-of-information tasks of three monkey species differing in the strictness of their dominance hierarchy and degree of fission–fusion dynamics: spider monkeys, capuchin monkeys and long-tailed macaques. Food was hidden from the dominants'' view either inside an opaque box or in a transparent box that could only be opened by knowledgeable subordinates. All species were capable of withholding information, with subjects refraining from interacting with the box when the dominant was nearby. Spider monkeys were the most efficient at retrieving food, by timing it when the dominant was far from the box. Capuchin monkeys were also quite efficient when alone at the box, but they lost much of the food when manipulating the box with the dominant nearby. The results supported our predictions based on interspecific differences in the strictness of the dominance hierarchy and the degree of fission–fusion dynamics, with the former constraining the subjects'' tendency to approach the box and the latter affecting the subjects’ tendency to wait for the appropriate situation to retrieve the food.  相似文献   
843.
Aspergillus flavus is the second most common cause of aspergillosis infection in immunocompromised patients and is responsible for the production of aflatoxins. Little is known about the population structure of A. flavus, although recent molecular and phenotypic data seem to demonstrate that different genetic lineages exist within this species. The aim of this study was to carry out a morphological, physiological, and molecular analysis of a set of clinical and environmental isolates to determine whether this variability is due to species divergence or intraspecific diversity, and to assess whether the clinical isolates form a separate group. The amdS and omtA genes were more phylogenetically informative than the other tested genes and their combined analysis inferred three main clades, with no clear distinction between clinical and environmental isolates. No important morphological and physiological differences were found between the members of the different clades, with the exception of the assimilation of d-glucosamine, which differentiates the members of the clade II from the others.  相似文献   
844.
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are the second most prevalent group of advanced gastrointestinal tract tumors. Resources invested in research on this patient population have exponentially increased in recent years, and this has become one of the most attractive fields for oncological research. Several proangiogenic proteins have been found to be overexpressed in GEP-NETs, including vascular endothelial growth factor and its receptors and the more closely related intracellular signaling pathways such as the epidermal growth factor pathway, type I insulin-like growth factor receptor, and the PI3K-(PTEN)-AKT-mTOR pathway. The recent results of the three most important Phase III studies in GEP-NETs have allowed for approval of two targeted agents, sunitinib and everolimus, for the treatment of patients with pancreatic neuroendocrine tumors after decades of minimal advances in this population.  相似文献   
845.
NAD-dependent butanediol dehydrogenase (Bdh1p) from Saccharomyces cerevisiae reversibly transforms acetoin to 2,3-butanediol in a stereospecific manner. Deletion of BDH1 resulted in an accumulation of acetoin and a diminution of 2,3-butanediol in two S. cerevisiae strains under two different growth conditions. The concentrations of (2R,3R)-2,3-butanediol are mostly dependent on Bdh1p activity, while those of (meso)-2,3-butanediol are also influenced by the activity of NADP(H)-dependent oxidoreductases. One of them has been purified and shown to be d-arabinose dehydrogenase (Ara1p), which converts (R/S)-acetoin to meso-2,3-butanediol and (2S,3S)-2,3-butanediol. Deletion of BDH2, a gene adjacent to BDH1, whose encoded protein is 51% identical to Bdh1p, does not significantly alter the levels of acetoin or 2,3-butanediol in comparison to the wild-type strain. Furthermore, we have expressed Bdh2p with a histidine tag and have shown it to be inactive toward 2,3-butanediol. A whole-genome expression analysis with microarrays demonstrates that BDH1 and BDH2 are reciprocally regulated.Acetoin and 2,3-butanediol are minor products generated by Saccharomyces cerevisiae during alcohol fermentation. Their sensory impacts on wine are poorly documented. Acetoin may affect the wine bouquet, although its perception threshold in wine is relatively high, around 150 mg/liter (21, 31). On the other hand, 2,3-butanediol is odorless (33) and cannot be expected to appreciably affect the sensory quality of wine. However, the compound may contribute to the wine body (28).Acetaldehyde, pyruvate, and α-acetolactate are the main precursors of acetoin in S. cerevisiae. Acetoin can be formed from acetaldehyde and/or pyruvate through an anomalous reaction of pyruvate decarboxylase. Thus, although its main activity is to irreversibly decarboxylate pyruvate to acetaldehyde, it can also catalyze carbon-carbon bond formation, yielding acetoin from pyruvate and/or acetaldehyde (2, 4). In addition, α-acetolactate would produce acetoin through its nonenzymatic decarboxylation to diacetyl and subsequent reduction to acetoin through the action of several NADH- and NADPH-dependent oxidoreductases (12). However, the situation is more complex in wine fermentation, where other yeasts and bacteria display supplementary enzymatic activities capable of producing both acetoin and 2,3-butanediol (1, 27).We have previously characterized a butanediol dehydrogenase (Bdh1p) as a medium-chain dehydrogenase/reductase (MDR) that can reversibly transform R-acetoin and S-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol, respectively, in a NAD(H)-dependent reaction (10). BDH2 is a gene adjacent to BDH1 whose uncharacterized protein product (Bdh2p) shares 51% sequence identity with Bdh1p. To evaluate the in vivo roles of Bdh1p and Bdh2p, we compared the levels of several extracellular metabolites in cultures of wild-type and deficient strains. The results show that, although Bdh1p is the main enzyme in 2,3-butanediol production [essentially the (2R,3R)-2,3-butanediol stereoisomer], some meso-2,3-butanediol is still produced by the bdh1Δ strains. We have characterized Ara1p as an oxidoreductase that can reduce racemic acetoin to meso-2,3-butanediol and (2S,3S)-2,3-butanediol in the presence of NADPH.Furthermore, we have overexpressed Bdh2p with a histidine tag at its carboxyl terminus and have shown it to be inactive toward acetoin and 2,3-butanediol. A microarray study indicated that BDH1 and BDH2 are reciprocally regulated under the conditions studied.  相似文献   
846.
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.  相似文献   
847.
A field bioremediation assay using the oleophilic fertilizer S200 was carried out 12 months after the Prestige heavy fuel-oil spill on a beach on the Cantabrian coast (north Spain). This assay showed that S200-enhanced oil degradation, particularly of high-molecular-weight n-alkanes and alkylated PAHs, suggesting an increase in the microbial bioavailability of these compounds. The bacterial community structure was determined by cultivation-independent analysis of polymerase chain reaction-amplified 16S rDNA by denaturing gradient gel electrophoresis. Bacterial community was mainly composed of α-Proteobacteria (Rhodobacteriaceae and Sphingomonadaceae). Representatives of γ-Proteobacteria (Chromatiales, Moraxellaceae, and Halomonadaceae), Bacteroidetes (Flavobacteriaceae), and Actinobacteria group (Nocardiaceae and Corynebacteriaceae) were also found. The addition of the fertilizer led to the appearance of the bacterium Mesonia algae in the early stages, with a narrow range of growth substrates, which has been associated with the common alga Achrosiphonia sonderi. The presence of Mesonia algae may be attributable to the response of the microbial community to the addition of N and P rather than indicating a role in the biodegradation process. The Rhodococcus group appeared in both assay plots, especially at the end of the experiment. It was also found at another site on the Galician coast that had been affected by the same spill. This genus has been associated with the degradation of n-alkanes up to C36. Taking into account the high content of heavy alkanes in the Prestige fuel, these microorganisms could play a significant role in the degradation of such fuel. A similar bacterial community structure was observed at another site that showed a similar degree of fuel weathering.  相似文献   
848.
849.

Aims

Antioxidant system abnormalities have been associated with ethanol consumption. This study examines the effects of chronic ethanol consumption on oxidative balance, including selenium (Se) levels in alcoholic patients with or without liver disease, and if these measurements could be indicative of liver disease.

Main methods

Serum Se levels, antioxidant enzymes' activities, malondialdehyde (MDA) and protein carbonyl (PC) were determined in three groups of patients: alcoholics without liver disease, alcoholics with liver disease, and non-alcoholics with liver disease; and in healthy volunteers.

Key findings

Serum Se levels were lower in alcoholic patients and in patients affected by liver disease and especially lower in the alcoholic liver disease group. These values were correlated with the activity of glutathione peroxidase (GPx), the antioxidant selenoprotein. The antioxidant activities of the glutathione reductase (GR) and superoxide dismutase (SOD) were also lower in the three non-healthy groups. However, GR activity decreased and SOD activity increased in the non-alcoholic liver disease group versus alcoholic groups. Higher concentrations of PC in serum were found in non-healthy groups and were higher in alcoholic patients who also showed higher MDA levels. The highest MDA and PC levels were found in the alcoholic liver disease group.

Significance

We conclude that serum Se levels are drastically decreased in alcoholic liver disease patients, showing that this element has a direct correlation with GPx activity, and lipid oxidation, suggesting that the serum Se/MDA ratio could be an indicator of hepatic damage caused by alcohol consumption, and pointing to Se as a possible antioxidant therapy.  相似文献   
850.
CD5 is a member of the family of receptors which contain extracellular domains homologous to the type I macrophage scavenger receptor cysteine-rich (SRCR) domain. Here, we compare the exon/intron organization of the human CD5 gene with its mouse homologue, as well as with the human CD6 gene, the closest related member of the SRCR superfamily. The human CD5 gene spans about 24.5 kb and consists of at least 11 exons. These exons are conserved in size, number, and structure in the mouse CD5 homologue. No evidence for the biallelic polymorphism reported in the mouse could be found among a population of 100 individuals of different ethnic origins. The human CD5 gene maps to the Chromosome (Chr) 11q12.2 region, 82 kb downstream from the human CD6 gene, in a head-to-tail orientation, a situation which recalls that reported at mouse Chr 19. The exon/intron organization of the human CD5 and CD6 genes was very similar, differing in the size of intron 1 and the number of exons coding for their cytoplasmic regions. While several isoforms, resulting from alternative splicing of the cytoplasmic exons, have been reported for CD6, we only found evidence of a cytoplasmic tailless CD5 isoform. The conserved structure of the CD5 and CD6 loci, both in mouse and human genomes, supports the notion that the two genes may have evolved from duplication of a primordial gene. The existence of a gene complex for the SRCR superfamily on human Chr 11q (and mouse Chr 19) still remains to be disclosed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号