首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2119篇
  免费   151篇
  国内免费   2篇
  2023年   29篇
  2022年   12篇
  2021年   26篇
  2020年   53篇
  2019年   57篇
  2018年   48篇
  2017年   46篇
  2016年   70篇
  2015年   111篇
  2014年   129篇
  2013年   152篇
  2012年   180篇
  2011年   152篇
  2010年   100篇
  2009年   89篇
  2008年   119篇
  2007年   121篇
  2006年   116篇
  2005年   111篇
  2004年   88篇
  2003年   86篇
  2002年   91篇
  2001年   29篇
  2000年   19篇
  1999年   24篇
  1998年   17篇
  1997年   23篇
  1996年   17篇
  1995年   17篇
  1994年   11篇
  1993年   11篇
  1992年   18篇
  1991年   9篇
  1990年   15篇
  1989年   9篇
  1988年   15篇
  1987年   10篇
  1986年   10篇
  1985年   7篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   3篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1964年   1篇
排序方式: 共有2272条查询结果,搜索用时 234 毫秒
121.
Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6-hydroxydopamine (6-OHDA) transiently increased c-Ret and GFRalpha1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c-Ret and GFRalpha1 was downregulated. GFRalpha2 expression was differentially regulated, as it decreased only 6 days after 6-OHDA injection. Triple-labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6-OHDA lesion.  相似文献   
122.
Mutants of Salmonella enterica carrying the igaA1 allele, selected as able to overgrow within fibroblast cells in culture, are mucoid and show reduced motility. Mucoidy is caused by derepression of wca genes (necessary for capsule synthesis); these genes are regulated by the RcsC/YojN/RcsB phosphorelay system and by the RcsA coregulator. The induction of wca expression in an igaA1 mutant is suppressed by mutations in rcsA and rcsC. Reduced motility is caused by lowered expression of the flagellar master operon, flhDC, and is suppressed by mutations in rcsB or rcsC, suggesting that mutations in the igaA gene reduce motility by activating the RcsB/C system. A null igaA allele can be maintained only in an igaA(+)/igaA merodiploid, indicating that igaA is an essential gene. Lethality is suppressed by mutations in rcsB, rcsC, and yojN, but not in rcsA, suggesting that the viability defect of an igaA null mutant is mediated by the RcsB/RcsC system, independently of RcsA (and therefore of the wca genes). Because all the defects associated with igaA mutations are suppressed by mutations that block the RcsB/RcsC system, we propose a functional interaction between the igaA gene product and either the Rcs regulatory network or one of its regulated products.  相似文献   
123.
Incubation of hepatocytes isolated from fasted rats with [14C]glucose for short periods of time showed that the initial stages of glycogen synthesis occur near the plasma membrane. Incubation with [14C]glucose followed by cold glucose demonstrated that glycogen synthesis is always active at the hepatocyte periphery and that previously synthesised glycogen moves towards the centre of the cell, while its place is filled by newly synthesised molecules. However, the reverse experiment, incubation with cold glucose before addition of [14C]glucose, showed that, as glycogen synthesis progresses, it also becomes gradually active in more internal sites of the hepatocyte. These results indicate a spatial order in the synthesis of hepatic glycogen.  相似文献   
124.
Elastase/anti-elastase imbalance is a hallmark of emphysema, a chronic obstructive pulmonary disease associated with the rupture and inefficient repair of interstitial elastin. We report that neutrophil elastase (NE) at low physiologic concentrations, ranging from 35 nm to 1 microm, invokes transient, peaking at 15 min, activation of extracellular signal-regulated kinases 1 and 2 (ERK) in elastogenic lung fibroblasts. ERK activation is preceded by the release of soluble 25-26-kDa forms of epidermal growth factor (EGF) and transactivation of EGF receptor (EGFR) in NE-exposed cells. The stimulatory effect of NE on ERK is abrogated in the presence of anti-EGF-neutralizing antibodies, EGFR tyrosine kinase inhibitor (AG1478), and ERK kinase inhibitor (PD98059), as well as abolished in both EGFR-desensitized and endocytosis-arrested fibroblasts. Nuclear accumulation of activated ERK is associated with transient, peaking at 30 min, induction of c-Fos and sustained, observed at 24-48 h, decrease of tropoelastin mRNA levels in NE-challenged cells. Pretreatment of fibroblasts with AG1478 or PD98059 abrogates the NE-initiated tropoelastin mRNA suppression. We conclude that proteolytically released EGF signals directly via EGFR and ERK to down-regulate tropoelastin mRNA in NE-challenged lung fibroblasts.  相似文献   
125.
How Tlg2p/syntaxin 16 'snares' Vps45   总被引:7,自引:0,他引:7  
Soluble N-ethylmaleimide sensitive factor-attachment protein receptors (SNAREs) and Sec1p/Munc18-homologs (SM proteins) play key roles in intracellular membrane fusion. The SNAREs form tight four-helix bundles (core complexes) that bring the membranes together, but it is unclear how this activity is coupled to SM protein function. Studies of the yeast trans-Golgi network (TGN)/endosomal SNARE complex, which includes the syntaxin-like SNARE Tlg2p, have suggested that its assembly requires activation by binding of the SM protein Vps45p to the cytoplasmic region of Tlg2p folded into a closed conformation. Nuclear magnetic resonance and biochemical experiments now show that Tlg2p and Pep12p, a late- endosomal syntaxin that interacts functionally but not directly with Vps45p, have a domain structure characteristic of syntaxins but do not adopt a closed conformation. Tlg2p binds tightly to Vps45p via a short N-terminal peptide motif that is absent in Pep12p. The Tlg2p/Vps45p binding mode is shared by the mammalian syntaxin 16, confirming that it is a Tlg2p homolog, and resembles the mode of interaction between the SM protein Sly1p and the syntaxins Ufe1p and Sed5p. Thus, this mechanism represents the most widespread mode of coupling between syntaxins and SM proteins.  相似文献   
126.
The complete assignment of the NMR spectra of ajugarin I and ajugareptansin, as models for other neo-clerodane diterpenoids isolated from the genus Ajuga, is reported in order to improve their usefulness as reference compounds. Conflicting NMR shift data for some members of this group are discussed, and plausible reassignments are proposed [i.e. the identity of ajugacumbin C and ajugamarin A2; the revision of ajugacumbin D as 12-hydroxyajugacumbin A, and of ajugacumbin E as 12-hydroxy-1-(3-hydroxy-2-methylenebutanoyloxy)ajugarin I] in order to provide a unified basis for future use.  相似文献   
127.
128.
Myotragus balearicus was a dwarf artiodactyl endemic to the Eastern Balearic Islands, where it evolved in isolation for more than 5 million years before becoming extinct between 3640 and 2135 cal BC (calibrated years BC). Numerous unusual apomorphies obscure the relationship between Myotragus and the extant Caprinae. Therefore, genetic data for this species would significantly contribute to the clarification of its taxonomic position. In this study, we amplify, sequence, and clone a 338-base pair (bp) segment of the mitochondrial cytochrome b (cyt b) gene from a >9Kyr Myotragus subfossil from la Cova des Gorgs (Mallorca). Our results confirm the phylogenetic affinity of Myotragus with the sheep (Ovis) and the takin (Budorcas). In each tree, the Myotragus branch is long in comparison with the other taxa, which may be evidence of a local change in the rate of evolution in cyt b. This rate change may be due to in part to an early age of first reproduction and short generation time in Myotragus, factors that are potentially related to the extreme reduction in size of the adult Myotragus as compared to the other Caprinae.  相似文献   
129.
The present investigation studies the effect of aging, short-term and long-term caloric restriction on four different markers of oxidative, glycoxidative or lipoxidative damage to heart mitochondrial proteins: protein carbonyls (measured by ELISA); N epsilon -(carboxyethyl)lysine (CEL), N epsilon -(carboxymethyl)lysine (CML), and N epsilon -(malondialdehyde)lysine (MDA-lys) measured by gas chromatography/mass spectrometry. Aging increased the steady state level of CML in rat heart mitochondria without changing the levels of the other three markers of protein damage. Short-term caloric restriction (six weeks) did not change any of the parameters measured. However, long-term (one year) caloric restriction decreased CEL and MDA-lys in heart mitochondria and did not change protein carbonyls and CML levels. The decrease in MDA-lys was not due to changes in the sensitivity of mitochondrial lipids to peroxidation since the measurements of the fatty acid composition showed that the total number of fatty acid double bonds was not changed by caloric restriction. The decrease in CEL and MDA-lys in caloric restriction agrees with the previously and consistently described finding that caloric restriction agrees with the previously and consistently described finding that caloric restriction lowers the rate of generation of reactive oxygen species (ROS) in rodent heart mitochondria, although in the case of CEL a caloric restriction-induced lowering of glycaemia can also be involved. The CEL and MDA-lys results support the notion that caloric restriction decreases oxidative stress-derived damage to heart mitochondrial proteins.  相似文献   
130.
We have recently cloned a glucose transporter from brown trout muscle (btGLUT) with high sequence homology to mammalian GLUT4 that is predominantly expressed in red and white skeletal muscle, the two major sites of glucose uptake in trout. To study the physiological regulation of this putative fish GLUT4, we have investigated the expression of btGLUT in red and white skeletal muscle of trout in which blood insulin levels have been altered experimentally. The expression of btGLUT in red muscle increased significantly when insulin plasma levels were elevated by either insulin or arginine treatment and decreased significantly when insulin plasma levels were reduced either by fasting or by feeding a low-protein, high-carbohydrate diet. In contrast, the expression of btGLUT in white muscle was not affected by changes in the plasma levels of insulin. These results strongly suggest that insulin could be regulating the expression of btGLUT in trout red muscle in vivo and set the ground to test the hypothesis that btGLUT may be considered a GLUT4 homolog in fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号