首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   43篇
  2022年   6篇
  2021年   15篇
  2020年   7篇
  2019年   18篇
  2018年   15篇
  2017年   14篇
  2016年   32篇
  2015年   28篇
  2014年   36篇
  2013年   40篇
  2012年   68篇
  2011年   54篇
  2010年   28篇
  2009年   40篇
  2008年   41篇
  2007年   33篇
  2006年   40篇
  2005年   34篇
  2004年   32篇
  2003年   29篇
  2002年   24篇
  2001年   10篇
  2000年   8篇
  1999年   13篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   2篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1975年   2篇
  1968年   1篇
  1966年   1篇
  1933年   1篇
排序方式: 共有788条查询结果,搜索用时 15 毫秒
81.
Production of yam microtubers using a temporary immersion system   总被引:5,自引:0,他引:5  
Yam clones ‚Pacala Duclos’ and ‚Belep’ in temporary immersion system culture showed favourable results on shoot growth stage and in the development of microtubers in comparison with solid culture media. Cultures in temporary immersion systems in both clones obtained a higher microtuber number per plant, with greater fresh weight and diameter in comparison with solid culture media. Besides, 45 and 47% of microtubers greater than 3.0 gFW for ‚Belep’ and ‚Pacala Duclos’ clones respectively, were obtained. Those tubers may be planted without acclimatization and may be stored for a prolonged period of time.  相似文献   
82.
Adenosine A1 receptors (A1Rs) and adenosine A(2A) receptors (A(2A)Rs) are the major mediators of the neuromodulatory actions of adenosine in the brain. In the striatum A1Rs and A(2A)Rs are mainly co-localized in the GABAergic striatopallidal neurons. In this paper we show that agonist-induced stimulation of A1Rs and A(2A)Rs induces neurite outgrowth processes in the human neuroblastoma cell line SH-SY5Y and also in primary cultures of striatal neuronal precursor cells. The kinetics of adenosine-mediated neuritogenesis was faster than that triggered by retinoic acid. The triggering of the expression of TrkB neurotrophin receptor and the increase of cell number in the G1 phase by the activation of adenosine receptors suggest that adenosine may participate in early steps of neuronal differentiation. Furthermore, protein kinase C (PKC) and extracellular regulated kinase-1/2 (ERK-1/2) are involved in the A1R- and A(2A)R-mediated effects. Inhibition of protein kinase A (PKA) activity results in a total inhibition of neurite outgrowth induced by A(2A)R agonists but not by A1R agonists. PKA activation is therefore necessary for A(2A)R-mediated neuritogenesis. Co-stimulation does not lead to synergistic effects thus indicating that the neuritogenic effects of adenosine are mediated by either A1 or A(2A) receptors depending upon the concentration of the nucleoside. These results are relevant to understand the mechanisms by which adenosine receptors modulate neuronal differentiation and open new perspectives for considering the use of adenosine agonists as therapeutic agents in diseases requiring neuronal repair.  相似文献   
83.
84.
The biodiversity of freshwater systems is endangered, especially in Mediterranean semiarid areas such as the south east of the Iberian Peninsula, whose rich and endemic biota is threatened by the development of surrounding land-crop irrigation. For this reason, the prioritization of areas for biodiversity conservation is an urgent target. In this study we used data records of water beetles from a province of the southeast of Spain for assessing priority areas for freshwater biodiversity conservation. We compare the performance of various area-selection methods, ranging from scoring procedures to complementarity-based algorithms, which are based on different criteria such as richness, rarity and vulnerability. The complementarity approaches were more efficient than methods using scoring or richness and rarity hotspots for representing conservation targets in a given number of areas and for identifying the minimum set of areas containing all species at least once. Within these, the richness-based algorithm was more efficient than rarity-based algorithm. Crucial target habitats for aquatic biodiversity conservation in the area studied are streams at medium altitude, hypersaline streams, and endorreic and karstic complexes.  相似文献   
85.
86.
Metabotropic glutamate receptors (mGluR) are present in cells of the nervous system, where they are activated by one of the main neurotransmitters, glutamate. They are also expressed in cells outside the nervous system. We identified and characterized two receptors belonging to group I mGluR, mGlu1R and mGlu5R, in human cell lines of lymphoid origin and in resting and activated lymphocytes from human peripheral blood. Both are highly expressed in the human Jurkat T cell line, whereas mGlu5R is expressed only in the human B cell line SKW6.4. In blood lymphocytes, mGlu5R is expressed constitutively, whereas mGlu1R is expressed only upon activation via the T cell receptor-CD3 complex. Group I receptors in the central nervous system are coupled to phospholipase C, whereas in blood lymphocytes, activation of mGlu5R does not trigger this signaling pathway, but instead activates adenylate cyclase. On the other hand, mGlu5R does not mediate ERK1/2 activation, whereas mGlu1R, which is coupled neither to phospholipase C nor to calcium channels and whose activation does not increase cAMP, activates the mitogen-activated protein kinase cascade. The differential expression of mGluR in resting and activated lymphocytes and the different signaling pathways that are triggered when mGlu1Rs or mGlu5Rs are activated point to a key role of glutamate in the regulation of T cell physiological function. The study of the signaling pathways (cAMP production and ERK1/2 phosphorylation) and the proliferative response obtained in the presence of glutamate analogs suggests that mGlu1R and mGlu5R have distinct functions. mGlu5R mediates the reported inhibition of cell proliferation evoked by glutamate, which is reverted by the activation of inducible mGlu1R. This is a novel non-inhibitory action mechanism for glutamate in lymphocyte activation. mGlu1R and mGlu5R thus mediate opposite glutamate effects in human lymphocytes.  相似文献   
87.
Phospholipase D (PLD) activity in mammalian cells has been associated with cell proliferation and differentiation. Here, we investigated the expression of PLD during differentiation of pluripotent embryonal carcinoma cells (P19) into astrocytes and neurons. Retinoic acid (RA)-induced differentiation increased PLD1 and PLD2 mRNA levels and PLD activity that was responsive to phorbol myristate acetate. Various agonists of membrane receptors activated PLD in RA-differentiated cells. Glutamate was a potent activator of PLD in neurons but not in astrocytes, whereas noradrenaline and carbachol increased PLD activity only in astrocytes. P19 neurons but not astrocytes released glutamate in response to a depolarizing stimulus, confirming the glutamatergic phenotype of these neurons. These results indicate upregulation of PLD gene expression associated with RA-induced neural differentiation.  相似文献   
88.
Gene expression throughout the different stages of Alzheimer's disease was analysed in samples from cerebral cortex. The gene encoding the voltage-gated potassium channel Kv3.4 was already overexpressed in early stages of the disease, and in advanced stages Kv3.4 was present at high levels in neurodegenerative structures. This subunit regulates delayed-rectifier currents, which are primary determinants of spike repolarization in neurones. In unique samples from a patient with Alzheimer's disease whose amount of amyloid plaques was decreased by beta amyloid immunization, Kv3.4 was overexpressed. The channel subunit was expressed in the neuropil, in the remaining conventional plaques in the frontal cortex and in collapsed plaques in the orbitary cortex. Therefore, amyloid deposition in plaques does not seem to be responsible for the increase in Kv3.4 levels. Nevertheless, Kv3.4 up-regulation is related to amyloid pathology, given that transgenic mice with the Swedish mutation of amyloid precursor protein showed increased expression of Kv3.4. Up-regulation of voltage-gated potassium channel subunits alters potassium currents in neurones and leads to altered synaptic activity that may underlie the neurodegeneration observed in Alzheimer's disease. Thus, Kv3.4 likely represents a novel therapeutic target for the disease.  相似文献   
89.
The Physiological Function of Melatonin in Plants   总被引:1,自引:0,他引:1  
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, was discovered in plants in 1995 but very little research into it has been carried out since. It is present in different parts of all the plant species studied, including leaves, stems, roots, fruits and seeds. This brief review will attempt to provide an overview of melatonin (its discovery, presence and functions in different organisms, biosynthetic route, etc.) and to compile a practically complete bibliography on this compound in plants. The common biosynthetic pathways shared by the auxin, indole-3-acetic, and melatonin suggest a possible coordinated regulation in plants. More specifically, our knowledge to date of the role of melatonin in the vegetative and reproductive physiology of plants is presented in detail. The most interesting aspects for future physiological studies are presented.Key Words: antioxidant, auxin, flowering, growth, IAA, melatonin, plant hormone, reproductive development, rooting, vegetative developmentMelatonin (N-acetyl-5-methoxytryptamine), an “old friend” and well known as an animal hormone but “new” to plant biology is arousing great interest due to its broad distribution in the biological kingdom and the recent data on its possible physiological role in plants. Many studies on melatonin, as a phytochemical compound with potentially interesting health-related properties, have recently appeared, but no more than 15–20 papers with a plant physiological focus have been published since 1995. Besides mentioning the most interesting data on melatonin related with plants, this review will hopefully trigger more studies into this molecule to deepen our understanding of the different physiological roles that it might play in plants. We shall briefly look at the well-known function of melatonin in vertebrates, its discovery in plants and other organisms, and its presence in plants as a possible medicinal phytochemical. The joint biosynthetic pathways of melatonin and the auxin indole-3-acetic acid (IAA) will be described. Thus, we reveal the new and emerging field of melatonin studies in plants, the limited physiological data available and its possible role in plants.  相似文献   
90.
Patterns of geographic variation in communication systems can provide insight into the processes that drive phenotypic evolution. Although work in birds, anurans, and insects demonstrates that acoustic signals are sensitive to diverse selective and stochastic forces, processes that shape variation in mammalian vocalizations are poorly understood. We quantified geographic variation in the advertisement songs of sister species of singing mice, montane rodents with a unique mode of vocal communication. We tested three hypotheses to explain spatial variation in the song of the lower altitude species, Scotinomys teguina: selection for species recognition in sympatry with congener, S. xerampelinus, acoustic adaptation to different environments, and stochastic divergence. Mice were sampled at seven sites in Costa Rica and Panamá; genetic distances were estimated from mitochondrial control region sequences, between‐site differences in acoustic environment were estimated from climatic data. Acoustic, genetic and geographic distances were all highly correlated in S. teguina, suggesting that population differentiation in song is largely shaped by genetic drift. Contrasts between interspecific genetic‐acoustic distances were significantly greater than expectations derived from intraspecific contrasts, indicating accelerated evolution of species‐specific song. We propose that, although much intraspecific acoustic variation is effectively neutral, selection has been important in shaping species differences in song.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号