首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41777篇
  免费   3668篇
  国内免费   25篇
  45470篇
  2023年   244篇
  2022年   519篇
  2021年   1093篇
  2020年   644篇
  2019年   799篇
  2018年   971篇
  2017年   811篇
  2016年   1250篇
  2015年   2083篇
  2014年   2313篇
  2013年   2495篇
  2012年   3499篇
  2011年   3184篇
  2010年   2074篇
  2009年   1775篇
  2008年   2541篇
  2007年   2517篇
  2006年   2268篇
  2005年   2139篇
  2004年   1986篇
  2003年   1869篇
  2002年   1721篇
  2001年   364篇
  2000年   265篇
  1999年   369篇
  1998年   448篇
  1997年   289篇
  1996年   270篇
  1995年   245篇
  1994年   235篇
  1993年   245篇
  1992年   227篇
  1991年   219篇
  1990年   208篇
  1989年   176篇
  1988年   190篇
  1987年   182篇
  1986年   140篇
  1985年   146篇
  1984年   176篇
  1983年   143篇
  1982年   179篇
  1981年   159篇
  1980年   151篇
  1979年   122篇
  1978年   123篇
  1977年   114篇
  1976年   96篇
  1975年   83篇
  1973年   89篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The feral Horse (Equus caballus) is widespread across the Australian Alps. Feral horses degrade alpine and sub‐alpine ecosystems and damage habitat of a range of threatened species. Despite this, there is little published work to document the extent and severity of these impacts. This study investigated impacts of feral horses on treeless drainage lines at 186 sites across the Australian Alps. The study included sites in the Australian Capital Territory, New South Wales and Victoria. We assessed nine variables related to soil and stream stability and vegetation cover, which in turn influence ecosystem function and habitat quality. We found significant differences among horse‐occupied and horse‐free sites for all soil and stream stability variables assessed. For all variables assessed, the average score (and hence, condition) was worse in horse‐occupied areas. The sites in poorest condition were occupied by horses. Impacts from other mammalian herbivores species appeared to be minor. Management intervention is necessary if these impacts of feral horses are to be addressed.  相似文献   
992.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   
993.
994.
The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG-protein systems.  相似文献   
995.

Background

There is increasing evidence of the role of adipose tissue on the systemic effects of acute pancreatitis. Patients with higher body mass index have increased risk of local and systemic complications and patients with android fat distribution and higher waist circumference are at greater risk for developing the severe form of the disease. Here we evaluated the changes on different areas of adipose tissue and its involvement on the inflammatory response in an experimental model of acute pancreatitis.

Methods

Pancreatitis was induced in male Wistar rats by intraductal administration of sodium taurocholate. Orlistat was administered to inhibit lipase activity. Activation of peritoneal macrophages was evaluated by measuring IL1β and TNFα expression. Inflammation was evaluated by measuring myeloperoxidase activity in mesenteric, epididymal and retroperitoneal areas of adipose tissue. Changes in the expression of inflammatory mediator in these areas of adipose tissue were also evaluated by RT-PCR.

Results

Pancreatitis induces the activation of peritoneal macrophages and a strong inflammatory response in mesenteric and epididymal sites of adipose tissue. By contrast, no changes were found in retroperitoneal adipose tissue. Inhibition of lipase prevented the activation of macrophages and the local inflammation in adipose tissue.

Conclusions

Our results confirm the involvement of adipose tissue on the progression of systemic inflammatory response during acute pancreatitis. However, there is a considerable diversity in different adipose tissue sites. These differences need to be taken into account in order to understand the progression from local pancreatic damage to systemic inflammation during acute pancreatitis.  相似文献   
996.

Aims

Growers of Eucalyptus globulus Labill. plantations can establish second and later rotations from coppice or by replanting with seedlings. At most locations where E. globulus is grown commercially, water availability is a major driver for productivity. Thus growers must consider which reestablishment technique will maximize productivity whilst sustaining site resources for subsequent rotations. In this study we aimed to compare the stand-scale water balance components of young coppice and seedling E. globulus.

Methods

A second rotation E. globulus coppice and seedling trial was monitored for two successive seasonal cycles. Coppice and seedling plots were instrumented with sap flow- and meteorological-sensors so that stand-scale water balance components could be estimated on a daily time step.

Results

Stand-scale transpiration rate (E) and rate of interception (E I) were larger in coppice compared to seedlings, but the rate of soil evaporation (E S) was lower. At approximately 2?years of age each coppice stump was reduced to a single dominant stem, a standard management practice for E. globulus growers, which reduced stem biomass by approximately 70% and caused E to fall to a value approximating that in seedlings. The cumulative transpiration of coppice was 425?mm greater than seedlings up to 34?months of age. Without the coppice reduction (down to one stem/stump), we estimate that the difference would have been much greater. The water-use efficiency of stem production (WUEstem) was greater in young coppice compared to seedlings but this benefit is likely to be offset by the loss of biomass (and thus transpired water) during coppice stem reduction.

Conclusion

Under the conditions of this study, which included reducing coppice to a single stem, reestablishment with seedling E. globulus resulted in a higher water-use efficiency of stem biomass production compared to coppice of a similar age.  相似文献   
997.
Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo‐EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid‐specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid‐specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light‐ and temperature‐dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A‐site and P‐site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non‐rotated state, in which the intersubunit bridges to the large subunit are stabilized.  相似文献   
998.
999.
In the bivalve mollusc Pecten maximus, the size of the mitochondrial DNA molecules ranges from 20 to 25.8 kbp. This variability is mainly correlated with the occurrence of a variable domain composed with two to five 1.6-kbp repeated units tandemly arrayed in the genome. DNA fragments spanning the 1,586-base-pair-long repeated element and the nearest flanking gene have been cloned and sequenced. This sequence was analyzed regarding its base composition and potential secondary structures. The repeated unit domain was positioned and oriented with regard to the known flanking gene. It ends 2 base pairs upstream relative to the beginning of the tRNAgly gene. The peculiar properties of the repeated unit were compared with those of the 1,442-bp repeated element found in the mitochondrial genome of the deep sea scallop Placopecten magellanicus. This comparison provided evidence for the absence of nucleotide conservation, except for a small sequence engaged in a secondary structure, but argued for a strong pressure maintaining domains with specific nucleotide content. A possible role for the conserved sequence is discussed.Correspondence to: A. Rigaa  相似文献   
1000.
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号