首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6349篇
  免费   463篇
  国内免费   2篇
  2023年   30篇
  2022年   77篇
  2021年   161篇
  2020年   87篇
  2019年   118篇
  2018年   144篇
  2017年   119篇
  2016年   207篇
  2015年   339篇
  2014年   366篇
  2013年   417篇
  2012年   592篇
  2011年   550篇
  2010年   330篇
  2009年   310篇
  2008年   378篇
  2007年   344篇
  2006年   291篇
  2005年   299篇
  2004年   291篇
  2003年   253篇
  2002年   225篇
  2001年   68篇
  2000年   37篇
  1999年   54篇
  1998年   61篇
  1997年   46篇
  1996年   53篇
  1995年   33篇
  1994年   47篇
  1993年   31篇
  1992年   35篇
  1991年   38篇
  1990年   25篇
  1989年   35篇
  1988年   19篇
  1987年   26篇
  1986年   27篇
  1985年   21篇
  1984年   31篇
  1983年   13篇
  1982年   15篇
  1981年   18篇
  1980年   18篇
  1979年   13篇
  1978年   12篇
  1977年   18篇
  1976年   12篇
  1975年   12篇
  1973年   12篇
排序方式: 共有6814条查询结果,搜索用时 93 毫秒
991.
The striatum integrates motor behavior using a well‐defined microcircuit whose individual components are independently affected in several neurological diseases. The glial cell line‐derived neurotrophic factor (GDNF), synthesized by striatal interneurons, and Sonic hedgehog (Shh), produced by the dopaminergic neurons of the substantia nigra (DA SNpc), are both involved in the nigrostriatal maintenance but the reciprocal neurotrophic relationships among these neurons are only partially understood. To define the postnatal neurotrophic connections among fast‐spiking GABAergic interneurons (FS), cholinergic interneurons (ACh), and DA SNpc, we used a genetically induced mouse model of postnatal DA SNpc neurodegeneration and separately eliminated Smoothened (Smo), the obligatory transducer of Shh signaling, in striatal interneurons. We show that FS postnatal survival relies on DA SNpc and is independent of Shh signaling. On the contrary, Shh signaling but not dopaminergic striatal innervation is required to maintain ACh in the postnatal striatum. ACh are required for DA SNpc survival in a GDNF‐independent manner. These data demonstrate the existence of three parallel but interdependent neurotrophic relationships between SN and striatal interneurons, partially defined by Shh and GDNF. The definition of these new neurotrophic interactions opens the search for new molecules involved in the striatal modulatory circuit maintenance with potential therapeutic value.  相似文献   
992.
993.
TDP‐43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP‐43 function at physiological levels both in vitro and in vivo. Interestingly, we find that mutations within the C‐terminal domain of TDP‐43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP‐43 loss‐ and gain‐of‐function effects. TDP‐43 gain‐of‐function effects in these mice reveal a novel category of splicing events controlled by TDP‐43, referred to as “skiptic” exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain‐of‐function mutation in endogenous Tardbp causes an adult‐onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain‐of‐function and skiptic exons in ALS patient‐derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP‐43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.  相似文献   
994.
995.
996.
The exact mechanism of gut dysfunction in Parkinson’s disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation.  相似文献   
997.
No-take marine reserves can be powerful management tools, but only if they are well designed and effectively managed. We review how ecological guidelines for improving marine reserve design can be adapted based on an area’s unique evolutionary, oceanic, and ecological characteristics in the Gulf of California, Mexico. We provide ecological guidelines to maximize benefits for fisheries management, biodiversity conservation and climate change adaptation. These guidelines include: representing 30% of each major habitat (and multiple examples of each) in marine reserves within each of three biogeographic subregions; protecting critical areas in the life cycle of focal species (spawning and nursery areas) and sites with unique biodiversity; and establishing reserves in areas where local threats can be managed effectively. Given that strong, asymmetric oceanic currents reverse direction twice a year, to maximize connectivity on an ecological time scale, reserves should be spaced less than 50–200 km apart depending on the planktonic larval duration of target species; and reserves should be located upstream of fishing sites, taking the reproductive timing of focal species in consideration. Reserves should be established for the long term, preferably permanently, since full recovery of all fisheries species is likely to take?>?25 years. Reserve size should be based on movement patterns of focal species, although marine reserves?>?10 km long are likely to protect?~?80% of fish species. Since climate change will affect species’ geographic range, larval duration, growth, reproduction, abundance, and distribution of key recruitment habitats, these guidelines may require further modifications to maintain ecosystem function in the future.  相似文献   
998.
Sucrose non‐fermenting 1‐related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep‐Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1‐1 grik2‐1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1‐2 grik2‐1) that grows similarly to the wild‐type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1‐2 grik2‐1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1‐2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1‐2 grik2‐1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild‐type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.  相似文献   
999.
GPR40 partial agonism is a promising new mechanism for the treatment of type 2 diabetes mellitus with clinical proof of concept. Most of the GPR40 agonists in the literature have a carboxylic acid functional group, which may pose a risk for idiosyncratic drug toxicity. A novel series of GPR40 agonists containing a tetrazole as a carboxylic acid bioisostere was identified. This series of compounds features a benzo[b]thiophene as the center ring, which is prone to oxidation during phase 1 metabolism. Following SAR optimization targeting GPR40 agonist activity and intrinsic clearance in microsomes (human and rat), potent and metabolically stable compounds were selected for in vivo evaluation. The compounds are efficacious at lowering blood glucose in a SD rat oGTT model.  相似文献   
1000.
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo‐inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo‐inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo‐inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号