首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6182篇
  免费   440篇
  国内免费   2篇
  2023年   28篇
  2022年   78篇
  2021年   157篇
  2020年   82篇
  2019年   115篇
  2018年   140篇
  2017年   115篇
  2016年   199篇
  2015年   327篇
  2014年   357篇
  2013年   410篇
  2012年   583篇
  2011年   543篇
  2010年   327篇
  2009年   302篇
  2008年   367篇
  2007年   338篇
  2006年   288篇
  2005年   292篇
  2004年   287篇
  2003年   246篇
  2002年   223篇
  2001年   60篇
  2000年   36篇
  1999年   48篇
  1998年   61篇
  1997年   41篇
  1996年   51篇
  1995年   30篇
  1994年   45篇
  1993年   30篇
  1992年   33篇
  1991年   33篇
  1990年   25篇
  1989年   35篇
  1988年   17篇
  1987年   26篇
  1986年   21篇
  1985年   18篇
  1984年   27篇
  1983年   13篇
  1982年   15篇
  1981年   18篇
  1980年   18篇
  1979年   13篇
  1978年   11篇
  1977年   15篇
  1976年   9篇
  1975年   10篇
  1973年   10篇
排序方式: 共有6624条查询结果,搜索用时 15 毫秒
151.
Acidity has profound effects on the taste of apples (Malus × domestica). Malic acid is the predominant organic acid in apples. Differences in malic acid content are caused by differences in accumulation of malic acid in the vacuole. This accumulation may be caused by a gene that is responsible for transport of malic acid from the cytosol into the vacuole. Here, we provide evidence that a malic acid transporter gene at the top of chromosome 16 caused significant differences in malic acid concentration and pH of apples. The pH of apples in a segregating F1 population was mapped and at the pH locus (named henceforth Ma locus for malic acid), two putative malic acid transporter genes were detected. These genes show high homology to AtALMT genes that code for malate channel proteins located in vacuolar membrane in Arabidopsis. The expression of one of the candidate genes (Ma1) cosegregated clearly with malic acid content. The inheritance of at least one dominant allele of this gene sufficed for an increased expression level that likely caused the observed threefold increase of the malic acid concentration and the reduction of the pH from 4 to 3 in mature apples, compared to the presence of the recessive, lowly expressed allele only. Our results show that differences in fruit acidity were probably caused by differences in expression levels of alleles of a malic acid transporter gene.  相似文献   
152.
In the present work, we report a novel on‐target protein cleavage method. The method utilizes ultrasonic energy and allows up to 20 samples to be cleaved in 5 min for protein identification and one sample in 30 s for on‐tissue digestion. The standard proteins were spotted on a conductive glass slide in a volume of 0.5 μL followed by 5 min of ultrasonication after trypsin addition. Controls (5 min, 37°C no ultrasonication) were also assayed. After trypsin addition, digestion of the tissues was enhanced by 30 s of ultrasonication. The samples were analyzed and compared to those obtained by using conventional 3 h heating proteolysis. The low sample volume needed for the digestion and reduction in sample‐handling steps and time are the features that make this method appealing to the many laboratories working with high‐throughput sample treatment.  相似文献   
153.
The filamentous fungus Aspergillus flavus is an opportunistic soil‐borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel‐based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI‐TOF‐MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified.  相似文献   
154.
Cryptococcus neoformans, the main causative agent of cryptococcosis, is a fungal pathogen that causes life‐threatening meningoencephalitis in immunocompromised patients. To date, there is no vaccine or immunotherapy approved to treat cryptococcosis. Cell‐ and antibody‐mediated immune responses collaborate to mediate optimal protection against C. neoformans infections. Accordingly, we identified cryptococcal protein fractions capable of stimulating cell‐ and antibody‐mediated immune responses and determined their efficacy to elicit protection against cryptococcosis. Proteins were extracted from C. neoformans and fractionated based on molecular mass. The fractions were then evaluated by immunoblot analysis for reactivity to serum extracted from protectively immunized mice and in cytokine recall assays for their efficacy to induce pro‐inflammatory and Th1‐type cytokine responses associated with protection. MS analysis revealed a number of proteins with roles in stress response, signal transduction, carbohydrate metabolism, amino acid synthesis, and protein synthesis. Immunization with select protein fractions containing immunodominant antigens induced significantly prolonged survival against experimental pulmonary cryptococcosis. Our studies support using the combination of immunological and proteomic approaches to identify proteins that elicit antigen‐specific antibody and Th1‐type cytokine responses. The immunodominant antigens that were discovered represent attractive candidates for the development of novel subunit vaccines for treatment and/or prevention of cryptococcosis.  相似文献   
155.
The aim of the present study was to determine the toxicokinetics of short-term exposures to di(2-ethylhexyl) phthalate (DEHP) and its effects on ovarian cyclicity and luteal function using a sheep experimental model. For establishing the model, we examined the clearance of DEHP after intravenous (i.v.) and intramuscular (i.m.) administration of a single dose of 25 mg/kg body weight (b.w.) and after i.m. administration of two different doses (25 and 50 mg/kg b.w.; DEHP25 and DEHP50, respectively) three times a week for two months. Results showed a significant, dose-dependent effect of DEHP administration, when compared to the control group (CTL; untreated ewes; n = 6), on the duration of the ewes’ estrous cycles (17.1 ± 0.5 days, CTL; 15.1 ± 0.9 days, DEHP25; 12.0 ± 0.8 days, DEHP50; p < 0.05); 94.9% of the cycles were of regular duration (15–19 days) in CTL, but only 51.1% and 25.4% in DEHP25 and DEHP50, respectively. Corpora lutea (CL) were smaller in DEHP50 than in DEHP25 (p < 0.05) and were smaller in both groups than in CTL (p < 0.005), but the maximum plasma concentrations of progesterone were greater (p < 0.05) in DEHP25 and DEHP50 than in CTL. In conclusion, the exposure of cycling ewes to DEHP causes shortening of the ovulatory cycles due mainly to a reduction in the size and lifespan of CL. However, the exposure to the phthalate is also associated with an increase in circulating concentrations of progesterone, suggesting the influence of DEHP on steroid metabolism.  相似文献   
156.
Vitamin D receptor polymorphisms may predispose that not all individuals could have benefits from the nutritional supplementation of 25-hydroxyvitamin D. Furthermore, vitamin D-related cardiovascular effects may also be influenced by soy isoflavones considered endocrine regulators of cardiovascular homeostasis. To find possible gene–diet interactions by evaluating individualized lipid metabolism benefits from an increase in soy and 25-hydroxyvitamin D intake, 106 healthy individuals, genotyped for vitamin D receptor (VDR) gene polymorphism rs1544410 (BsmI) were randomly assigned to either no intake, to daily 250?mL or 500?mL of a 25-hydroxyvitamin D supplemented SB for 2 months. The soybean beverage induced differences in cardiovascular risk factors (lipid profile, blood pressure, TNFα and MCP-1), as well as vitamin D metabolites in a dose-gene-dependent relation. Thus, VDR BsmI polymorphism affected individual response being the GG genotype the ones that showed dose-dependent manner responsiveness in the reduction in total cholesterol, LDL and triglycerides in comparison with the AA/AG genotype. These differences were associated with increased plasma levels of 1α,25-dyhydroxyvitamin D3 in the carriers of the GG genotype. It was concluded that metabolic response to 25-hydroxyvitamin D and soybean supplementation is dependent on VDR BsmI GG genotype due to a higher conversion rate from vitamin D precursors.  相似文献   
157.
158.
Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages.  相似文献   
159.
160.
Human family X polymerases contribute both to genomic stability and variability through their specialized functions in DNA repair. Polμ participates in the repair of spontaneous double strand breaks (DSB) by non homologous end-joining (NHEJ), and also in the V(D)J recombination process after programmed DSBs. Polμ plays this dual role due to its template-dependent and terminal transferase (template-independent) polymerization activities. In this study we evaluated if Polμ could be regulated by Cdk phosphorylation along the cell cycle. In vitro kinase assays showed that the S phase-associated Cdk2/cyclin A complex was able to phosphorylate Polμ. We identified Ser12, Thr21 (located in the BRCT domain) and Ser372 (located in loop1) as the target residues. Mutation of these residues to alanine indicated that Ser372 is the main phosphorylation site. Mobilization of loop1, which mediates DNA end micro-synapsis, is crucial both for terminal transferase and NHEJ. Interestingly, the phospho-mimicking S372E mutation specifically impaired these activities. Our evidences suggest that Polμ could be regulated in vivo by phosphorylation of the BRCT domain (Ser12/Thr21) and of Ser372, affecting the function of loop1. Consequently, Polμ’s most distinctive activities would be turned off at specific cell-cycle phases (S and G2), when these promiscuous functions might be harmful to the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号