首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11014篇
  免费   820篇
  国内免费   3篇
  11837篇
  2024年   13篇
  2023年   67篇
  2022年   161篇
  2021年   332篇
  2020年   190篇
  2019年   257篇
  2018年   284篇
  2017年   256篇
  2016年   408篇
  2015年   635篇
  2014年   660篇
  2013年   770篇
  2012年   1003篇
  2011年   966篇
  2010年   567篇
  2009年   529篇
  2008年   642篇
  2007年   620篇
  2006年   554篇
  2005年   521篇
  2004年   473篇
  2003年   411篇
  2002年   371篇
  2001年   99篇
  2000年   60篇
  1999年   82篇
  1998年   97篇
  1997年   48篇
  1996年   63篇
  1995年   37篇
  1994年   58篇
  1993年   36篇
  1992年   46篇
  1991年   50篇
  1990年   32篇
  1989年   45篇
  1988年   26篇
  1987年   33篇
  1986年   32篇
  1985年   24篇
  1984年   35篇
  1983年   16篇
  1982年   24篇
  1981年   23篇
  1980年   21篇
  1979年   18篇
  1977年   18篇
  1975年   17篇
  1974年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
Poly(ADP-ribosyl)ation (PARylation) is a reversible protein modification carried out by the concerted actions of poly(ADP-ribose) polymerase (PARP) enzymes and poly(ADP-ribose) (PAR) decomposing enzymes such as PAR glycohydrolase (PARG) and ADP-ribosyl hydrolase 3 (ARH3). Reversible PARylation is a pleiotropic regulator of various cellular functions but uncontrolled PARP activation may also lead to cell death. The cellular demise pathway mediated by PARylation in oxidatively stressed cells has been described almost thirty years ago. However, the underlying molecular mechanisms have only begun to emerge relatively recently. PARylation has been implicated in necroptosis, autophagic cell death but its role in extrinsic and intrinsic apoptosis appears to be less predominant and depends largely on the cellular model used. Currently, three major pathways have been made responsible for PARP-mediated necroptotic cell death: (1) compromised cellular energetics mainly due to depletion of NAD, the substrate of PARPs; (2) PAR mediated translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus (parthanatos) and (3) a mostly elusive crosstalk between PARylation and cell death/survival kinases and phosphatases. Here we review how these PARP-mediated necroptotic pathways are intertwined, how PARylation may contribute to extrinsic and intrinsic apoptosis and discuss recent developments on the role of PARylation in autophagy and autophagic cell death.  相似文献   
93.
This article maps the structure for understanding the Dominican transnational field. By transnational field we refer to a web of linkages that affects the lives of Dominicans in their places of residence in every social field. We find that social boundaries of the nation do not coincide with political ones and the degree of participation in transnational exchanges varies. We suggest that the structure of the transnational social field is better understood by establishing and defining broad and narrow transnational social practices.  相似文献   
94.
Leukotriene A4 (LTA4) hydrolase catalyzes a rate-limiting final biosynthetic step of leukotriene B4 (LTB4), a potent lipid chemotactic agent and proinflammatory mediator. LTB4 has been implicated in the pathogenesis of various acute and chronic inflammatory diseases, and thus LTA4 hydrolase is regarded as an attractive therapeutic target for anti-inflammation. To facilitate identification and optimization of LTA4 hydrolase inhibitors, a specific and efficient assay to quantify LTB4 is essential. This article describes the development of a novel 384-well homogeneous time-resolved fluorescence assay for LTB4 (LTB4 HTRF assay) and its application to establish an HTRF-based LTA4 hydrolase assay for lead optimization. This LTB4 HTRF assay is based on competitive inhibition and was established by optimizing the reagent concentration, buffer composition, incubation time, and assay miniaturization. The optimized assay is sensitive, selective, and robust, with a Z' factor of 0.89 and a subnanomolar detection limit for LTB4. By coupling this LTB4 HTRF assay to the LTA4 hydrolase reaction, an HTRF-based LTA4 hydrolase assay was established and validated. Using a test set of 16 LTA4 hydrolase inhibitors, a good correlation was found between the IC50 values obtained using LTB4 HTRF with those determined using the LTB enzyme-linked immunoassay (R = 0.84). The HTRF-based LTA4 hydrolase assay was shown to be an efficient and suitable assay for determining compound potency and library screening to guide the development of potent inhibitors of LTA4 hydrolase.  相似文献   
95.
96.
An aspartic endopeptidase was purified in our laboratory from Rhipicephalus (Boophilus) microplus eggs [Logullo, C., Vaz, I.S., Sorgine, M.H., Paiva-Silva, G.O., Faria, F.S., Zingali, R.B., De Lima, M.F., Abreu, L., Oliveira, E.F., Alves, E.W., Masuda, H., Gonzales, J.C., Masuda, A., and Oliveira, P.L., 1998. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Rhipicephalus (Boophilus) microplus. Parasitology 116, 525–532]. Boophilus yolk cathepsin (BYC) was tested as component of a protective vaccine against the tick, inducing a significant immune response in cattle [da Silva, V.I., Jr., Logullo, C., Sorgine, M., Velloso, F.F., Rosa de Lima, M.F., Gonzales, J.C., Masuda, H., Oliveira, P.L., and Masuda, A., 1998. Immunization of bovines with an aspartic proteinase precursor isolated from Rhipicephalus (Boophilus) microplus eggs. Vet. Immunol. Immunopathol. 66, 331–341]. In this work, BYC was cloned and its primary sequence showed high similarity with other aspartic endopeptidases. In spite of this similarity, BYC sequence shows many important differences in relation to other aspartic peptidases, the most important being the lack of the second catalytic Asp residue, considered to be essential for the catalysis of this class of endopeptidases. When we determined BYC cleavage specificity by LC-MS, we found out that it presents a preference for hydrophobic residues in P1 and P1' in accordance to most aspartic endopeptidases. Also, when analyzed by circular dicroism, BYC presented high β sheet content, also a characteristic of aspartic endopeptidases. On the other hand, although both native and recombinant BYC are catalytically active, they present a very low specific activity, what seems to indicate that this peptidase will digest its natural substrate, vitellin, very slowly. We speculate that such a slow Vn degradative process might constitute an important strategy to preserve egg protein content to the hatching larvae.  相似文献   
97.
The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.  相似文献   
98.
99.

Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  相似文献   
100.
Macroautophagy/autophagy failure with the accumulation of autophagosomes is an early neuropathological feature of Alzheimer disease (AD) that directly affects amyloid beta (Aβ) metabolism. Although loss of presenilin 1 function has been reported to impair lysosomal function and prevent autophagy flux, the detailed mechanism leading to autophagy dysfunction in AD remains to be elucidated. The resemblance between pathological hallmarks of AD and Niemann-Pick Type C disease, including endosome-lysosome abnormalities and impaired autophagy, suggests cholesterol accumulation as a common link. Using a mouse model of AD (APP-PSEN1-SREBF2 mice), expressing chimeric mouse-human amyloid precursor protein with the familial Alzheimer Swedish mutation (APP695swe) and mutant presenilin 1 (PSEN1-dE9), together with a dominant-positive, truncated and active form of SREBF2/SREBP2 (sterol regulatory element binding factor 2), we demonstrated that high brain cholesterol enhanced autophagosome formation, but disrupted its fusion with endosomal-lysosomal vesicles. The combination of these alterations resulted in impaired degradation of Aβ and endogenous MAPT (microtubule associated protein tau), and stimulated autophagy-dependent Aβ secretion. Exacerbated Aβ-induced oxidative stress in APP-PSEN1-SREBF2 mice, due to cholesterol-mediated depletion of mitochondrial glutathione/mGSH, is critical for autophagy induction. In agreement, in vivo mitochondrial GSH recovery with GSH ethyl ester, inhibited autophagosome synthesis by preventing the oxidative inhibition of ATG4B deconjugation activity exerted by Aβ. Moreover, cholesterol-enrichment within the endosomes-lysosomes modified the levels and membrane distribution of RAB7A and SNAP receptors (SNAREs), which affected its fusogenic ability. Accordingly, in vivo treatment with 2-hydroxypropyl-β-cyclodextrin completely rescued these alterations, making it a potential therapeutic tool for AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号