首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19852篇
  免费   1338篇
  国内免费   6篇
  21196篇
  2024年   18篇
  2023年   132篇
  2022年   121篇
  2021年   223篇
  2020年   268篇
  2019年   245篇
  2018年   607篇
  2017年   516篇
  2016年   799篇
  2015年   1175篇
  2014年   1099篇
  2013年   1513篇
  2012年   1806篇
  2011年   1689篇
  2010年   1009篇
  2009年   799篇
  2008年   1259篇
  2007年   1200篇
  2006年   1162篇
  2005年   1001篇
  2004年   1012篇
  2003年   891篇
  2002年   836篇
  2001年   141篇
  2000年   100篇
  1999年   141篇
  1998年   128篇
  1997年   81篇
  1996年   99篇
  1995年   94篇
  1994年   84篇
  1993年   85篇
  1992年   76篇
  1991年   58篇
  1990年   51篇
  1989年   44篇
  1988年   43篇
  1987年   32篇
  1986年   24篇
  1985年   45篇
  1984年   53篇
  1983年   32篇
  1982年   39篇
  1981年   22篇
  1980年   19篇
  1979年   36篇
  1978年   21篇
  1977年   14篇
  1976年   29篇
  1975年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The MurA enzyme from Pseudomonas aeruginosa was purified to homogeneity and found to be biologically active as a UDP-N-acetylglucosamine (UNAG) enolpyruvyl transferase in a coupled enzyme assay where ATPase activity was measured by the release of inorganic phosphate. A microtiter plate assay coupled to competitive biopanning using the UDP-N-acetylglucosamine was used to screen 109 C-7-C and 12-mers peptides from phage display libraries. From 60 phage-encoded peptides identified after the fourth round of biopanning, deduced amino acid sequences were aligned and two peptides were synthesized and tested for inhibition of the MurA-catalyzed reaction. The PEP 1354 peptide inhibited the ATPase activity of MurA with an IC50 value of 200 μM and was found to be a competitive inhibitor of UNAG. The pre-incubation of MurA with inhibitor indicated a time-independent inhibition. This time-dependent inhibition is the first report of peptide inhibitors of MurA, which represent the scaffold for the synthesis of inhibitory peptidomimetic molecules.  相似文献   
972.
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.Programmed cell death (PCD)1 is a fundamental event for the development of multicellular organisms and the homeostasis of their tissues. It is an evolutionarily conserved mechanism present in organisms ranging from yeast to mammals (13).In mammals, cytochrome c (Cc) and dATP bind to apoptosis protease-activating factor-1 (Apaf-1) in the cytoplasm, a process leading to the formation of the Apaf-1/caspase-9 complex known as apoptosome. This apoptosome subsequently activates caspases-3 and -7 (4, 5). In other organisms, such as Caenorhabditis elegans or Drosophila melanogaster, however, Cc is not essential for the assembly and activation of the apoptosome (6) despite the presence of proteins homologous to Apaf-1—cell death abnormality-4 (CED-4) in C. elegans and Drosophila Apaf-1-related killer (Dark) in D. melanogaster—which have been found to be essential for caspase cascade activation. Furthermore, other organisms such as Arabidopsis thaliana lack Apaf-1 (7). In fact, only highly distant caspase homologues (metacaspases) (8, 9), serine proteases (saspases) (10), phytaspases (11) and VEIDases (1214) with caspase-like activity have been detected in plants; however, their targets remain veiled and whether they are activated by Cc remains unclear.Intriguingly, the release of Cc from mitochondria into the cytoplasm during the onset of PCD is an evolutionarily conserved event found in organisms ranging from yeast (15) and plants (16) to flies (17), and mammals (18). However, understanding of the roles of this phenomenon in different species can be said to be uneven at best. In fact, the release of Cc from mitochondria has thus far been considered a random event in all organisms, save mammals. Thus, the participation of Cc in the onset and progression of PCD needs to be further elucidated.Even in the case of mammals, the role(s) of Cc in the cytoplasm during PCD remain(s) controversial. Recently, new putative functions of Cc, going beyond the already-established apoptosome assembly process, have been proposed in the nucleus (19, 20) and the endoplasmic reticulum (2123). Neither these newly proposed functions nor other arising functions, such as oxidative stress (24), are as yet fully understood. This current state of affairs demands deeper exploration of the additional roles played by Cc in nonmammalian species.In this study, putative novel Cc-partners involved in plant PCD were identified. For this identification, a proteomic approach was employed based on affinity chromatography and using Cc as bait. The Cc-interacting proteins were identified using nano-liquid chromatography tandem mass spectrometry (NanoLC-MS/MS). These Cc-partners were then further confirmed in vivo through bimolecular fluorescence complementation (BiFC) in A. thaliana protoplasts and human HEK293T cells, as a heterologous system. Finally, the Cc-GLY2, Cc-NRP1 and Cc-TCL interactions were corroborated in vitro using surface plasmon resonance (SPR).These results indicate that Cc is able to interact with targets in the plant cell cytoplasm during PCD. Moreover, they provide new ways of understanding why Cc release is an evolutionarily well-conserved event, and allow us to propose Cc as a signaling messenger, which somehow controls different essential events during PCD.  相似文献   
973.
974.
Many physiological processes are controlled by a great diversity of Ca2+ signals. Within cell, Ca2+ signals depend upon Ca2+ entry and/or Ca2+ release from internal Ca2+ stores. The control of Ca2+-store mobilization is ensured by a family of messengers comprising inositol 1,4,5 trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). From recent works, new concepts have emerged where activation of the cells by outside stimuli, acting at the plasma membrane, results in the synthesis of multiple Ca2+-releasing messengers which may interact and shape complex Ca2+ signals in the cytosol as well as in the nucleus. This contribution will cover the most recent advances on NAADP signalling with some emphasis on neurons.  相似文献   
975.
Natural regulatory T cells control the development of atherosclerosis in mice   总被引:17,自引:0,他引:17  
Atherosclerosis is an immunoinflammatory disease elicited by accumulation of lipids in the artery wall and leads to myocardial infarction and stroke. Here, we show that naturally arising CD4(+)CD25(+) regulatory T cells, which actively maintain immunological tolerance to self and nonself antigens, are powerful inhibitors of atherosclerosis in several mouse models. These results provide new insights into the immunopathogenesis of atherosclerosis and could lead to new therapeutic approaches that involve immune modulation using regulatory T cells.  相似文献   
976.
MOTIVATION: Multi-series time-course microarray experiments are useful approaches for exploring biological processes. In this type of experiments, the researcher is frequently interested in studying gene expression changes along time and in evaluating trend differences between the various experimental groups. The large amount of data, multiplicity of experimental conditions and the dynamic nature of the experiments poses great challenges to data analysis. RESULTS: In this work, we propose a statistical procedure to identify genes that show different gene expression profiles across analytical groups in time-course experiments. The method is a two-regression step approach where the experimental groups are identified by dummy variables. The procedure first adjusts a global regression model with all the defined variables to identify differentially expressed genes, and in second a variable selection strategy is applied to study differences between groups and to find statistically significant different profiles. The methodology is illustrated on both a real and a simulated microarray dataset.  相似文献   
977.
It was recently shown that there is a predominance of phase 1 introns near the cleavage site of signal peptides encoded by human genes. It was suggested that this biased distribution was due to intron insertion at AGmid R:G proto-splice sites. However, we found that there is no disproportional excess of AGmid R:G that would support insertion at proto-splice sites. In fact, all nGmid R:G sites are enriched in the vicinity of the cleavage site. Additional analyses support an alternative scenario in which exon-shuffling is largely responsible for such excess of phase 1 introns.  相似文献   
978.
The purpose of this study was to examine the efficacy of 11 wk of resistance training to failure vs. nonfailure, followed by an identical 5-wk peaking period of maximal strength and power training for both groups as well as to examine the underlying physiological changes in basal circulating anabolic and catabolic hormones. Forty-two physically active men were matched and then randomly assigned to either a training to failure (RF; n = 14), nonfailure (NRF; n = 15), or control groups (C; n = 13). Muscular and power testing and blood draws to determine basal hormonal concentrations were conducted before the initiation of training (T0), after 6 wk of training (T1), after 11 wk of training (T2), and after 16 wk of training (T3). Both RF and NRF resulted in similar gains in 1-repetition maximum bench press (23 and 23%) and parallel squat (22 and 23%), muscle power output of the arm (27 and 28%) and leg extensor muscles (26 and 29%), and maximal number of repetitions performed during parallel squat (66 and 69%). RF group experienced larger gains in the maximal number of repetitions performed during the bench press. The peaking phase (T2 to T3) after NRF resulted in larger gains in muscle power output of the lower extremities, whereas after RF it resulted in larger gains in the maximal number of repetitions performed during the bench press. Strength training leading to RF resulted in reductions in resting concentrations of IGF-1 and elevations in IGFBP-3, whereas NRF resulted in reduced resting cortisol concentrations and an elevation in resting serum total testosterone concentration. This investigation demonstrated a potential beneficial stimulus of NRF for improving strength and power, especially during the subsequent peaking training period, whereas performing sets to failure resulted in greater gains in local muscular endurance. Elevation in IGFBP-3 after resistance training may have been compensatory to accommodate the reduction in IGF-1 to preserve IGF availability.  相似文献   
979.
Acanthamoeba spp. are free-living amoebae that cause amoebic granulomatous encephalitis, skin lesions, and ocular amoebic keratitis in humans. Several authors have suggested that proteases could play a role in the pathogenesis of these diseases. In the present work, we performed a partial biochemical characterization of proteases in crude extracts of Acanthamoeba spp. and in conditioned medium using 7.5% SDS-PAGE copolymerized with 0.1% m/v gelatin as substrate. We distinguished a total of 17 bands with proteolytic activity distributed in two species of Acanthamoeba. The bands ranged from 30 to 188 kDa in A. castellanii and from 34 to 144 kDa in A. polyphaga. Additionally, we showed that the pattern of protease activity differed in the two species of Acanthamoeba when pH was altered. By using protease inhibitors, we found that the proteolytic activities belonged mostly to the serine protease family and secondly to cysteine proteases and that the proteolytic activities from A. castellanii were higher than those in A. polyphaga. Furthermore, aprotinin was found to inhibit crude extract protease activity on Madin-Darby canine kidney (MDCK) monolayers. These data suggest that protease patterns could be more complex than previously reported.  相似文献   
980.
Torulaspora delbrueckii has emerged during evolution as one of the most osmotolerant yeasts. However, the molecular mechanisms underlying this unusual stress resistance are poorly understood. In this study, we have characterized the functional role of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase pathway in mediating the osmotic stress response, among others, in T. delbrueckii. We show that the T. delbrueckii Hog1p homologue TdHog1p is phosphorylated after cell transfer to NaCl- or sorbitol-containing medium. However, TdHog1p plays a minor role in tolerance to conditions of moderate osmotic stress, a trait related mainly with the osmotic balance. In consonance with this, the absence of TdHog1p produced only a weak defect in the timing of the osmostress-induced glycerol and GPD1 mRNA overaccumulation. Tdhog1Delta mutants also failed to display aberrant morphology changes in response to osmotic stress. Furthermore, our data indicate that the T. delbrueckii HOG pathway has evolved to respond to specific environmental conditions and to play a pivotal role in the stress cross-protection mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号