首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41297篇
  免费   3039篇
  国内免费   7篇
  2023年   261篇
  2022年   261篇
  2021年   536篇
  2020年   532篇
  2019年   554篇
  2018年   1043篇
  2017年   911篇
  2016年   1417篇
  2015年   2146篇
  2014年   2099篇
  2013年   2804篇
  2012年   3681篇
  2011年   3445篇
  2010年   1870篇
  2009年   1514篇
  2008年   2640篇
  2007年   2524篇
  2006年   2484篇
  2005年   2151篇
  2004年   2068篇
  2003年   1936篇
  2002年   1766篇
  2001年   815篇
  2000年   906篇
  1999年   525篇
  1998年   296篇
  1997年   171篇
  1996年   193篇
  1995年   200篇
  1994年   165篇
  1993年   160篇
  1992年   185篇
  1991年   156篇
  1990年   143篇
  1989年   135篇
  1988年   105篇
  1987年   91篇
  1986年   89篇
  1985年   118篇
  1984年   134篇
  1983年   81篇
  1982年   97篇
  1981年   72篇
  1980年   65篇
  1979年   81篇
  1978年   60篇
  1977年   53篇
  1976年   73篇
  1975年   60篇
  1974年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
Two carbohydrate binding modules (DD1 and DD2) belonging to CBM32 are located at the C terminus of a chitosanase from Paenibacillus sp. IK-5. We produced three proteins, DD1, DD2, and tandem DD1/DD2 (DD1+DD2), and characterized their binding ability. Transition temperature of thermal unfolding (Tm) of each protein was elevated by the addition of cello-, laminari-, chitin-, or chitosan-hexamer (GlcN)6. The Tm elevation (ΔTm) in DD1 was the highest (10.3 °C) upon the addition of (GlcN)6 and was markedly higher than that in DD2 (1.0 °C). A synergistic effect was observed (ΔTm = 13.6 °C), when (GlcN)6 was added to DD1+DD2. From isothermal titration calorimetry experiments, affinities to DD1 were not clearly dependent upon chain length of (GlcN)n; ΔGr° values were −7.8 (n = 6), −7.6 (n = 5), −7.6 (n = 4), −7.6 (n = 3), and −7.1 (n = 2) kcal/mol, and the value was not obtained for GlcN due to the lowest affinity. DD2 bound (GlcN)n with the lower affinities (ΔGr° = −5.0 (n = 3) ∼ −5.2 (n = 6) kcal/mol). Isothermal titration calorimetry profiles obtained for DD1+DD2 exhibited a better fit when the two-site model was used for analysis and provided greater affinities to (GlcN)6 for individual DD1 and DD2 sites (ΔGr° = −8.6 and −6.4 kcal/mol, respectively). From NMR titration experiments, (GlcN)n (n = 2∼6) were found to bind to loops extruded from the core β-sandwich of individual DD1 and DD2, and the interaction sites were similar to each other. Taken together, DD1+DD2 is specific to chitosan, and individual modules synergistically interact with at least two GlcN units, facilitating chitosan hydrolysis.  相似文献   
953.
Bacterial osmoadaptation involves the cytoplasmic accumulation of compatible solutes to counteract extracellular osmolarity. The halophilic and highly halotolerant bacterium Chromohalobacter salexigens is able to grow up to 3 m NaCl in a minimal medium due to the de novo synthesis of ectoines. This is an osmoregulated pathway that burdens central metabolic routes by quantitatively drawing off TCA cycle intermediaries. Consequently, metabolism in C. salexigens has adapted to support this biosynthetic route. Metabolism of C. salexigens is more efficient at high salinity than at low salinity, as reflected by lower glucose consumption, lower metabolite overflow, and higher biomass yield. At low salinity, by-products (mainly gluconate, pyruvate, and acetate) accumulate extracellularly. Using [1-13C]-, [2-13C]-, [6-13C]-, and [U-13C6]glucose as carbon sources, we were able to determine the main central metabolic pathways involved in ectoines biosynthesis from glucose. C. salexigens uses the Entner-Doudoroff pathway rather than the standard glycolytic pathway for glucose catabolism, and anaplerotic activity is high to replenish the TCA cycle with the intermediaries withdrawn for ectoines biosynthesis. Metabolic flux ratios at low and high salinity were similar, revealing a certain metabolic rigidity, probably due to its specialization to support high biosynthetic fluxes and partially explaining why metabolic yields are so highly affected by salinity. This work represents an important contribution to the elucidation of specific metabolic adaptations in compatible solute-accumulating halophilic bacteria.  相似文献   
954.
The ATP-dependent insertion of Mg2+ into protoporphyrin IX is the first committed step in the chlorophyll biosynthetic pathway. The reaction is catalyzed by magnesium chelatase, which consists of three gene products: BchI, BchD, and BchH. The BchI and BchD subunits belong to the family of AAA+ proteins (ATPases associated with various cellular activities) and form a two-ring complex with six BchI subunits in one layer and six BchD subunits in the other layer. This BchID complex is a two-layered trimer of dimers with the ATP binding site located at the interface between two neighboring BchI subunits. ATP hydrolysis by the BchID motor unit fuels the insertion of Mg2+ into the porphyrin by the BchH subunit. In the present study, we explored mutations that were originally identified in semidominant barley (Hordeum vulgare L.) mutants. The resulting recombinant BchI proteins have marginal ATPase activity and cannot contribute to magnesium chelatase activity although they apparently form structurally correct complexes with BchD. Mixing experiments with modified and wild-type BchI in various combinations showed that an exchange of BchI subunits in magnesium chelatase occurs during the catalytic cycle, which indicates that dissociation of the complex may be part of the reaction mechanism related to product release. Mixing experiments also showed that more than three functional interfaces in the BchI ring structure are required for magnesium chelatase activity.  相似文献   
955.
Platelets are immunologically competent cells containing cytokines such as TGF-β1 that regulate cell-mediated immunity. However, the mechanisms underlying cytokine secretion from platelets are undefined. The Wiskott-Aldrich syndrome protein (WASp) regulates actin polymerization in nucleated hematopoietic cells but has other role(s) in platelets. WASp-null (WASp−/−) platelets stimulated with a PAR-4 receptor agonist had increased TGF-β1 release compared with WT platelets; inhibiting WASp function with wiskostatin augmented TRAP-induced TGF-β1 release in human platelets. TGF-β1 release is dissociated from α-granule secretion (P-selectin up-regulation) and occurs more gradually, with ∼10–15% released after 30–60 min. Blockade of Src family kinase-mediated WASp Tyr-291/Tyr-293 phosphorylation increased TGF-β1 release, with no additive effect in WASp−/− platelets, signifying that phosphorylation is critical for WASp-limited TGF-β1 secretion. Inhibiting F-actin assembly with cytochalasin D enhanced secretion in WT platelets and further increased TGF-β1 release in WASp−/− platelets, indicating that WASp and actin assembly independently regulate TGF-β1 release. A permeabilized platelet model was used to test the role of upstream small GTPases in TGF-β1 release. N17Cdc42, but not Rac1 mutants, increased TGF-β1 secretion and abrogated WASp phosphorylation. We conclude that WASp function restricts TGF-β1 secretion in a Cdc42- and Src family kinase-dependent manner and independently of actin assembly.  相似文献   
956.
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates.  相似文献   
957.
The larval development of the dusky grouper Epinephelus marginatus up to the benthic juvenile stage is described in detail to establish a reference for their larval identification. Development is described in terms of ontogenetic changes in morphology, growth, pigmentation, fin structure and skeletal structure. Larvae were reared in mesocosms at a mean temperature of 24·3° C, salinity of 36·5, dissolved oxygen of 6·4 mg l?1 and pH of 8·2. Newly hatched larvae had an estimated total length (LT) of 2·3 mm. On the second day post hatching the yolk was almost fully absorbed with traces of the oil globule still present, the eyes were already pigmented and mouth and gut functional. At this stage the cranial skeletal elements for feeding and breathing (mouth and gills) and the pectoral‐fin support were already present. About 50% of the observed larvae had food in their guts. Pigmentation was very characteristic, consisting of two large chromatophores visible on the edge of the primordial fin, close to the midpoint of the post‐anal region of the body and over the midgut and hindgut and post‐anal portion of the body. At 2·9 mm LT the emergence of the second dorsal‐fin spine, characteristic of the Epinephilinae, was clearly visible. The pre‐flexion stage started in larva of 3·2 mm LT. At 5·5 mm LT the larvae possessed posterior preopercular angle spines, and the dorsal and pelvic spines presented serrated edges and were pigmented. The water surface‐tension‐related death of the yolk sac and pre‐flexion larvae described in the rearing of several other grouper species did not occur during E. marginatus culture. Notochord flexion, with initial ossification of the caudal‐fin supporting elements, started at 6·6 mm LT. At this stage the major melanophores, preopercular, dorsal and pelvic spines and mandibular teeth were already present. Transformation of larvae into juveniles occurred when larvae averaged 13·8 mm LT. Juveniles with a mean LT of 20·1 mm started to settle and most of them were benthic with a mean LT of 26·8 mm.  相似文献   
958.
Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.  相似文献   
959.
The insects known as thrips are commonly thought of as flower‐living and pestiferous organisms, but we report here a novel interaction between a phlaeothripine thrips species, Mirothrips arbiter gen. et sp. nov. and three species of social paper wasps in Brazil. This thrips species breeds inside the wasp colonies, and larval and adult thrips feed on wasp eggs, which become severely damaged. Infested nests can contain up to 300 M. arbiter gen. et sp. nov. individuals. The closest relatives of M. arbiter are two presumably predaceous species: Mirothrips bicolor sp. nov. , which inhabits abandoned Cecidomyiidae galls, and Mirothrips analis comb. nov. , described from individuals collected in the silken bags of the caterpillars of Psychidae moths. The behaviour exhibited by M. arbiter represents one of the most evolutionarily advanced lifestyles known among Thysanoptera, and we predict that other polistine species serve as hosts for this thrips in Brazil. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 332–341.  相似文献   
960.
AimsWe investigated the effects of ketogenic diet (KD) on levels of tumor necrosis factor alpha (TNF-α, a classical pro-inflammatory cytokine), BDNF (brain-derived neurotrophic factor, commonly associated with synaptic plasticity), and S100B, an astrocyte neurotrophic cytokine involved in metabolism regulation.Main methodsYoung Wistar rats were fed during 8 weeks with control diet or two KD, containing different proportions of omega 6 and omega 3 polyunsaturated fatty acids. Contents of TNF-α, BDNF and S100B were measured by ELISA in two brain regions (hippocampus and striatum) as well as blood serum and cerebrospinal fluid.Key findingsOur data suggest that KD was able to reduce the levels of BDNF in the striatum (but not in hippocampus) and S100B in the cerebrospinal fluid of rats. These alterations were not affected by the proportion of polyunsaturated fatty acids offered. No changes in S100B content were observed in serum or analyzed brain regions. Basal TNF-α content was not affected by KD.SignificanceThese findings reinforce the importance of this diet as an inductor of alterations in the brain, and such changes might contribute to the understanding of the effects (and side effects) of KD in brain disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号