首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41281篇
  免费   3038篇
  国内免费   7篇
  2023年   261篇
  2022年   244篇
  2021年   536篇
  2020年   532篇
  2019年   554篇
  2018年   1043篇
  2017年   911篇
  2016年   1417篇
  2015年   2146篇
  2014年   2099篇
  2013年   2804篇
  2012年   3681篇
  2011年   3445篇
  2010年   1870篇
  2009年   1514篇
  2008年   2640篇
  2007年   2524篇
  2006年   2484篇
  2005年   2151篇
  2004年   2068篇
  2003年   1936篇
  2002年   1766篇
  2001年   815篇
  2000年   906篇
  1999年   525篇
  1998年   296篇
  1997年   171篇
  1996年   193篇
  1995年   200篇
  1994年   165篇
  1993年   160篇
  1992年   185篇
  1991年   156篇
  1990年   143篇
  1989年   135篇
  1988年   105篇
  1987年   91篇
  1986年   89篇
  1985年   118篇
  1984年   134篇
  1983年   81篇
  1982年   97篇
  1981年   72篇
  1980年   65篇
  1979年   81篇
  1978年   60篇
  1977年   53篇
  1976年   73篇
  1975年   60篇
  1974年   58篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
931.
Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.Resistance (R) proteins play a central role in the recognition-based immune system of plants. Unlike vertebrates, plants lack an adaptive immune system with highly specialized immune cells. Instead, they rely on an innate immune system in which each cell is autonomous. Two types of immune receptors can be distinguished in plants, pathogen-associated molecular patterns recognition receptors that detect conserved molecular patterns in plant pathogens and intracellular R proteins that recognize specific effectors employed by pathogens as modifiers of host metabolism or defense mechanisms (Jones and Dangl, 2006). Effector-triggered activation of R proteins leads to an array of protective responses, often culminating in programmed cell death at the site of infection (Greenberg and Yao, 2004), thereby preventing further ingress of the pathogen. Pathogens have evolved mechanisms to evade recognition by R proteins and to regain their virulence (Dodds and Rathjen, 2010). This continuous coevolutionary process between host and pathogen has resulted in a reservoir of highly diverse R proteins in plants, enabling them to counteract a wide range of pathogens and pests.The most common class of R proteins consists of nucleotide-binding (NB)-leucine-rich repeat (LRR) proteins with a tripartite domain architecture, which roughly corresponds to an N-terminal response domain (a coiled coil [CC] or Toll/Interleukin-1 receptor [TIR] domain) involved in downstream signaling, a central molecular switch domain (the NB domain present in the mammalian apoptosis regulator Apaf1, plant R proteins, and the Caenorhabditis elegans apoptosis regulator CED4 [NB-ARC]), and a C-terminal sensor domain (the LRR domain). The NB-ARC domain is an extended nucleotide-binding domain that plant immune receptors share with metazoan apoptosis regulators and immune receptors such as Apaf1, CED4, and nucleotide-binding oligomerization domain (NOD-like) receptors (NLRs) and belongs to the STAND (signal transduction ATPases with numerous domains) family of nucleoside triphosphatase domains (van der Biezen and Jones, 1998; Leipe et al., 2004; Albrecht and Takken, 2006; Maekawa et al., 2011b). The overall modular architecture of metazoan STAND nucleoside triphosphatase is similar to that of NB-LRR plant immune receptors, but the domains flanking the NB-ARC domain often differ. In NLRs, for example, several N-terminal domains can be found, including caspase-recruiting domains and Pyrin domains (Proell et al., 2008). In the mammalian protein Apaf1, the sensor involved in cytochrome c detection consists of C-terminal WD40 repeats (Zou et al., 1997).In plant NB-LRR resistance proteins, the recognition of a pathogen effector via the LRR domain is thought to switch the conformation of the protein from a closed, autoinhibited “off” state into an open, active “on” state (Lukasik and Takken, 2009). The activation of NB-LRR proteins is most likely a multistep process in which the NB-ARC domain plays a central role. The three subdomains of the NB-ARC, the NB, ARC1, and ARC2, collectively form a nucleotide-binding pocket that adopts different conformations depending on the bound nucleotide. This mechanism seems to be conserved between proteins from organisms as distant as bacteria, metazoans, and plants (Rairdan and Moffett, 2007; Danot et al., 2009; Takken and Tameling, 2009). The conformational change coincides with the exchange of bound ADP for ATP in the NB-ARC, probably stabilizing the active conformation (Tameling et al., 2006; Ade et al., 2007). Hydrolysis of the bound ATP is hypothesized to return the domains to their inactive state. The exact mechanism by which elicitor recognition via the LRR leads to a conformational change of the NB-ARC and the subsequent activation of immune signaling pathways is not clear.Previous studies have shown that the CC/TIR, NB-ARC, and LRR domains in plant immune receptors interact and cooperate with each other in an interdependent manner (Moffett et al., 2002; Leister et al., 2005; Ade et al., 2007; Rairdan et al., 2008). From these data, a picture emerges in which the LRR domain is not only involved in pathogen recognition, but also plays a role in maintaining an autoinhibited resting state in the absence of pathogens via its interactions with the other domains (Bendahmane et al., 2002; Hwang and Williamson, 2003; Ade et al., 2007; Qi et al., 2012). A similar role as regulatory domain has been found for the sensor domains of other NLRs, such as the mammalian Apaf1 (Hu et al., 1998). For the potato (Solanum tuberosum) immune receptor Rx1, a model plant NB-LRR protein, it has been shown that the LRR cooperates with the ARC subdomains in retaining the inactive state of the protein. The deletion of the ARC and LRR domains leads to a constitutive activity of the NB (Bendahmane et al., 2002; Rairdan et al., 2008). In addition, it was demonstrated that the elicitor, the Potato virus X (PVX) coat protein, modifies the interdomain interactions in Rx1 (Moffett et al., 2002; Rairdan et al., 2008). Sequence exchanges between Rx1 and the highly homologous nematode resistance protein Gpa2 (88% amino acid identity) resulted in incompatibilities between the domains that give rise to inappropriate activation of cell death responses (Rairdan and Moffett, 2006), indicating that the cooperation between the sensor and switch domains depends on an interaction fine tuned by intramolecular coevolution. In this light, it is interesting to note that a functional ortholog of Rx1, Rx2 from Solanum acaule, is almost identical to Rx1 in its LRR region but displays a higher similarity to Gpa2 in stretches of its CC-NB-ARC sequence (Bendahmane et al., 2000).The aim of our study was to pinpoint the molecular determinants controlling the switch between the resting and activation state of NB-LRR proteins. The incompatibility between the ARC and LRR domains of Rx1 and Gpa2 was used as a guideline to dissect the molecular and structural determinants involved in the cooperation between the switch (NB-ARC) and sensor (LRR) domain. An extensive exchange of polymorphic residues between these two homologous NB-LRR proteins resulted in the identification of a minimal fragment of 68 amino acid residues in the ARC2 domain and the first LRR repeats as being crucial for proper activation of Gpa2 and Rx1. Within this minimal region, we identified two amino acids that, despite their proximity in the amino acid sequence, differentiate between elicitor-dependent (position 401) and independent activation (position 403). However, structural modeling of the domains shows that the residue at position 403 operates at the interface of the ARC2 and N-terminal part of the LRR domain, while residue 401 mapped at the interface between the ARC2 and NB domain. Furthermore, an acidic loop region in the ARC2 domain and complementary-charged basic patches in the N-terminal half of the LRR domain are shown to be required for the physical interaction between these domains. We demonstrate that the binding between the CC- NB-ARC and LRR domains is disrupted upon elicitor-dependent activation and that the complementary-charged residues are predicted to facilitate reassociation. Two independent docking simulations of the NB-ARC and LRR domain indicate that the LRR domain binds to the NB-ARC domain at the surface formed by the interaction of the ARC2 and NB subdomains. We present a mechanistic model in which the first repeats of the LRR, the ARC2 subdomain, and the NB form a clamp, which governs the shuttling between a closed, autoinhibited “off” state and an open, active “on” state of the resistance protein. Finally, we discuss the consequences of the functional constraints imposed by the interface of the NB, ARC2, and LRR domain for the generation of novel resistance specificities via evolutionary processes and genetic engineering.  相似文献   
932.
933.
934.
Lipid profiles of three strains (Mexico, Australia, Japan) of Chattonella marina (Subrahmanyan) Hara et Chihara were studied under defined growth (phosphate, light, and growth phase) and harvest (intact and ruptured cells) conditions. Triacylglycerol levels were always <2%, sterols <7%, free fatty acids varied between 2 and 33%, and polar lipids were the most abundant lipid class (>51% of total lipids). The major fatty acids in C. marina were palmitic (16:0), eicosapentaenoic (EPA, 20:5ω3), octadecatetraenoic (18:4ω3), myristic (14:0), and palmitoleic (16:1ω7c) acids. Higher levels of EPA were found in ruptured cells (21.4–29.4%) compared to intact cells (8.5–25.3%). In general, Japanese N‐118 C. marina was the highest producer of EPA (14.3–29.4%), and Mexican CMCV‐1 the lowest producer (7.9–27.1%). Algal cultures, free fatty acids from C. marina, and the two aldehydes 2E,4E‐decadienal and 2E,4E‐heptadienal (suspected fatty acid‐derived products) were tested against the rainbow trout fish gill cell line RTgill‐W1. The configuration of fatty acids plays an important role in ichthyotoxicity. Free fatty acid fractions, obtained by base saponification of total lipids from C. marina showed a potent toxicity toward gill cells (median lethal concentration, LC50 (at 1 h) of 0.44 μg · mL?1 in light conditions, with a complete loss of viability at >3.2 μg · mL?1). Live cultures of Mexican C. marina were less toxic than Japanese and Australian strains. This difference could be related to differing EPA content, superoxide anion production, and cell fragility. The aldehydes 2E,4E‐decadienal and 2E,4E‐heptadienal also showed high impact on gill cell viability, with LC50 (at 1 h) of 0.34 and 0.36 μg · mL?1, respectively. Superoxide anion production was highest in Australian strain CMPL01, followed by Japanese N‐118 and Mexican CMCV‐1 strains. Ruptured cells showed higher production of superoxide anion compared to intact cells (e.g., 19 vs. 9.5 pmol · cell?1 · hr?1 for CMPL01, respectively). Our results indicate that C. marina is more ichthyotoxic after cell disruption and when switching from dark to light conditions, possibly associated with a higher production of superoxide anion and EPA, which may be quickly oxidized to produce more toxic derivates, such as aldehydes.  相似文献   
935.
936.
937.
We compared movement patterns and rhythms of activity of a top predator, the Iberian lynx Lynx pardinus, a mesopredator, the red fox Vulpes vulpes, and their shared principal prey, the rabbit Oryctolagus cuniculus, in relation to moon phases. Because the three species are mostly nocturnal and crepuscular, we hypothesized that the shared prey would reduce its activity at most risky moon phases (i.e. during the brightest nights), but that fox, an intraguild prey of lynx, would avoid lynx activity peaks at the same time. Rabbits generally moved further from their core areas on darkest nights (i.e. new moon), using direct movements which minimize predation risk. Though rabbits responded to the increased predation risk by reducing their activity during the full moon, this response may require several days, and the moon effect we observed on the rabbits had, therefore, a temporal gap. Lynx activity patterns may be at least partially mirroring rabbit activity: around new moons, when rabbits moved furthest and were more active, lynxes reduced their travelling distances and their movements were concentrated in the core areas of their home ranges, which generally correspond to areas of high density of rabbits. Red foxes were more active during the darkest nights, when both the conditions for rabbit hunting were the best and lynxes moved less. On the one hand, foxes increased their activity when rabbits were further from their core areas and moved with more discrete displacements; on the other hand, fox activity in relation to the moon seemed to reduce dangerous encounters with its intraguild predator.  相似文献   
938.
Drought-induced events of massive tree mortality appear to be increasing worldwide. Species-specific vulnerability to drought mortality may alter patterns of species diversity and affect future forest composition. We have explored the consequences of the extreme drought of 2005, which caused high sapling mortality (approx. 50 %) among 10-year-old saplings of two coexisting pine species in the Mediterranean mountains of Sierra Nevada (Spain): boreo-alpine Pinus sylvestris and Mediterranean P. nigra. Sapling height growth, leaf δ13C and δ18O, and foliar nitrogen concentration in the four most recent leaf cohorts were measured in dead and surviving saplings. The foliar isotopic composition of dead saplings (which reflects time-integrated leaf gas-exchange until mortality) displayed sharp increases in both δ13C and δ18O during the extreme drought of 2005, suggesting an important role of stomatal conductance (gs) reduction and diffusional limitations to photosynthesis in mortality. While P. nigra showed decreased growth in 2005 compared to the previous wetter year, P. sylvestris maintained similar growth levels in both years. Decreased growth, coupled with a sharper increase in foliar δ18O during extreme drought in dead saplings, indicate a more conservative water use strategy for P. nigra. The different physiological behavior of the two pine species in response to drought (further supported by data from surviving saplings) may have influenced 2005 mortality rates, which contributed to 2.4-fold greater survival for P. nigra over the lifespan of the saplings. This species-specific vulnerability to extreme drought could lead to changes in dominance and distribution of pine species in Mediterranean mountain forests.  相似文献   
939.
The Iberian mountain spiny fescues are a reticulate group of five diploid grass taxa consisting of three parental species and two putative hybrids: F. × souliei (F. eskia × F. quadriflora) and F. × picoeuropeana (F. eskia × F. gautieri). Phenotypic and molecular studies were conducted with the aim of determining the taxonomic boundaries and genetic relationships of the five taxa and disentangling the origins of the two hybrids. Statistical analyses of 31 selected phenotypic traits were conducted on individuals from 159 populations and on nine type specimens. Molecular analyses of random amplified polymorphic DNA (RAPD) markers were performed on 29 populations. The phenotypic analyses detected significant differences between the five taxa and demonstrated the overall intermediacy of the F. × picoeuropeana and F. × souliei between their respective parents. The RAPD analysis corroborated the genetic differentiation of F. eskia, F. gautieri and F. quadriflora and the intermediate nature of the two hybrids; however, they also detected genetic variation within F. × picoeuropeana. These results suggest distinct origins for F. × picoeuropeana in the Cantabrian and Pyrenean mountains, with the sporadic Pyrenean populations having potentially resulted from recent hybridizations and the stabilized Cantabrian ones from older events followed by potential displacements of the parents. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 676–706.  相似文献   
940.
The taxonomy of the Iberian Leptodirini species of the section Anillochlamys Jeannel, 1909 has been revised. The proposed classification is based on the study of the genital structures of both sexes, in particular the internal sac of the aedeagus. According to the different models of internal sacs, the following genera, species and subspecies are identified: genus Anillochlamys Jeannel, 1909: A. aurouxi Español, 1965, A. bueni Jeannel, 1909 (= A. avariae Comas, 1977 n.syn.), A. cullelli Lagar, 1978, A. moroderi Bolívar, 1923 (= A. negrei Comas, 1990 n. syn.), A. subtruncatus Jeannel, 1930 (= A. baguenai Jeannel, 1930) and A. tropicus (Abeille, 1881) (= Adelops hispanicus Ehlers, 1893; A. tropicus var. apicalis Jeannel, 1909); genus Paranillochlamys Zariquiey, 1940: P. catalonicus (Jeannel, 1913), P. urgellesi (Español, 1965) and P. velox Zariquiey, 1940 (= P. velox montadai Lagar, 1963 n. syn.); genus Pseudochlamys Comas, 1977: P. raholai (Zariquiey, 1922) (= Anillochlamys raholai luis-bofilli Zariquiey, 1940 n. syn.); genus Spelaeochlamys Dieck, 1870 (= Typhlochlamys Español, 1975 n.syn.): S.bardisai (Español, 1975) (= Typhlochlamys escolai Comas, 1978 n. syn.), S. ehlersi Dieck, 1870 and S. ehlersi verai Comas, 1977 n. stat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号