首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677763篇
  免费   65333篇
  国内免费   1049篇
  744145篇
  2018年   6891篇
  2017年   6579篇
  2016年   9419篇
  2015年   12514篇
  2014年   14567篇
  2013年   20091篇
  2012年   23499篇
  2011年   24276篇
  2010年   15999篇
  2009年   14362篇
  2008年   21197篇
  2007年   21622篇
  2006年   20454篇
  2005年   19365篇
  2004年   19356篇
  2003年   18297篇
  2002年   17791篇
  2001年   28713篇
  2000年   28708篇
  1999年   22520篇
  1998年   7990篇
  1997年   7999篇
  1996年   7689篇
  1995年   7252篇
  1994年   6953篇
  1993年   6869篇
  1992年   18327篇
  1991年   18015篇
  1990年   17846篇
  1989年   17220篇
  1988年   15994篇
  1987年   15108篇
  1986年   14065篇
  1985年   14148篇
  1984年   11624篇
  1983年   9992篇
  1982年   7407篇
  1981年   6737篇
  1980年   6285篇
  1979年   10805篇
  1978年   8588篇
  1977年   7736篇
  1976年   7404篇
  1975年   8535篇
  1974年   9245篇
  1973年   9062篇
  1972年   8048篇
  1971年   7470篇
  1970年   6430篇
  1969年   6137篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.

Background

Female Aedes aegypti mosquitoes are the principal vector for dengue fever, causing 50–100 million infections per year, transmitted between human and mosquito by blood feeding. Ae. aegypti host-seeking behavior is known to be inhibited for three days following a blood meal by a hemolymph-borne humoral factor. Head Peptide-I is a candidate peptide mediating this suppression, but the mechanism by which this peptide alters mosquito behavior and the receptor through which it signals are unknown.

Methodology/Principal Findings

Head Peptide-I shows sequence similarity to short Neuropeptide-F peptides (sNPFs) that have been implicated in feeding behaviors and are known to signal through Neuropeptide Y (NPY)-Like Receptors (NPYLRs). We identified eight NPYLRs in the Ae. aegypti genome and screened each in a cell-based calcium imaging assay for sensitivity against a panel of peptides. Four of the Ae. aegypti NPYLRs responded to one or more peptide ligands, but only NYPLR1 responded to Head Peptide-I as well as sNPFs. Two NPYLR1 homologues identified in the genome of the Lyme disease vector, Ixodes scapularis, were also sensitive to Head Peptide-I. Injection of synthetic Head Peptide-I and sNPF-3 inhibited host-seeking behavior in non-blood-fed female mosquitoes, whereas control injections of buffer or inactive Head Peptide-I [Cys10] had no effect. To ask if NPYLR1 is necessary for blood-feeding-induced host-seeking inhibition, we used zinc-finger nucleases to generate five independent npylr1 null mutant strains and tested them for behavioral abnormalities. npylr1 mutants displayed normal behavior in locomotion, egg laying, sugar feeding, blood feeding, host seeking, and inhibition of host seeking after a blood meal.

Conclusions

In this work we deorphanized four Ae. aegypti NPYLRs and identified NPYLR1 as a candidate sNPF receptor that is also sensitive to Head Peptide-I. Yet npylr1 alone is not required for host-seeking inhibition and we conclude that other receptors, additional peptides, or both, regulate this important behavior.  相似文献   
982.

Background

Mycobacterium ulcerans (MU) is responsible for disfiguring skin lesions and is endemic on the Bellarine peninsula of southeastern Australia. Antibiotics have been shown to be highly effective in sterilizing lesions and preventing disease recurrences when used alone or in combination with surgery. Our practice has evolved to using primarily oral medical therapy.

Methods

From a prospective cohort of MU patients managed at Barwon Health, we describe those treated with primary medical therapy defined as treatment of a M. ulcerans lesion with antimicrobials either alone or in conjunction with limited surgical debridement.

Results

From 1/10/2010 through 31/12/11, 43 patients were treated with exclusive medical therapy, of which 5 (12%) also underwent limited surgical debridement. The median patient age was 50.2 years, and 86% had WHO category 1 and 91% ulcerative lesions. Rifampicin was combined with ciprofloxacin in 30 (70%) and clarithromycin in 12 (28%) patients. The median duration of antibiotic therapy was 56 days, with 7 (16%) receiving less than 56 days. Medication side effects requiring cessation of one or more antibiotics occurred in 7 (16%) patients. Forty-two (98%) patients healed without recurrence within 12 months, and 1 patient (2%) experienced a relapse 4 months after completion of 8 weeks of antimicrobial therapy.

Conclusion

Our experience demonstrates the efficacy and safety of primary oral medical management of MU infection with oral rifampicin-based regimens. Further research is required to determine the optimal and minimum durations of antibiotic therapy, and the most effective antibiotic dosages and formulations for young children.  相似文献   
983.
Mass drug administration (MDA) with antibiotics is a key component of the SAFE strategy for trachoma control. Guidelines recommend that where MDA is warranted the whole population be targeted with 80% considered the minimum acceptable coverage. In other countries, MDA is usually conducted by salaried Ministry of Health personnel (MOH). In Plateau State, Nigeria, the existing network of volunteer Community Directed Distributors (CDD) was used for the first trachoma MDA. We conducted a population-based cluster random survey (CRS) of MDA participation to determine the true coverage and compared this to coverage reported from CDD registers. We surveyed 1,791 people from 352 randomly selected households in 24 clusters in three districts in Plateau State in January 2011, following the implementation of MDA. Households were enumerated and all individuals present were asked about MDA participation. Household heads were questioned about household-level characteristics and predictors of participation. Individual responses were compared with the CDD registers. MDA coverage was estimated as 60.3% (95% CI 47.9–73.8%) by the survey compared with 75.8% from administrative program reports. CDD registration books for comparison with responses were available in 19 of the 24 clusters; there was a match for 658/682 (96%) of verifiable responses. CDD registers did not list 481 (41.3%) of the individuals surveyed. Gender and age were not associated with individual participation. Overall MDA coverage was lower than the minimum 80% target. The observed discrepancy between the administrative coverage estimate from program reports and the CRS was largely due to identification of communities missed by the MDA and not reported in the registers. CRS for evaluation of MDA provides a useful additional monitoring tool to CDD registers. These data support modification of distributor training and MDA delivery to increase coverage in subsequent rounds of MDA.  相似文献   
984.
Recent studies have demonstrated the feasibility of using membrane ultrafiltration for the purification of pegylated proteins; however, the separations have all been performed at relatively low protein concentrations where intermolecular interactions are unimportant. The objective of this study was to examine the behavior at higher PEG concentrations and to develop an appropriate theoretical framework to describe the effects of intermolecular interactions. Ultrafiltration experiments were performed using pegylated α‐lactalbumin as a model protein with both neutral and charged composite regenerated cellulose membranes. The transmission of the pegylated α‐lactalbumin, PEG, and α‐lactalbumin all increase with increasing PEG concentration due to the increase in the solute partition coefficient arising from unfavorable intermolecular interactions in the bulk solution. The experimental results were in good agreement with a simple model that accounts for the change in Gibbs free energy associated with these intermolecular interactions, including the effects of concentration polarization on the local solute concentrations upstream of the membrane. These intermolecular interactions are shown to cause a greater than expected loss of pegylated product in a batch ultrafiltration system, and they alter the yield and purification factor that can be achieved during a diafiltration process to remove unreacted PEG. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:655–663, 2013  相似文献   
985.
Chronic HIV-1 infection is associated with persistent viremia in most patients, but it remains unclear how free virus may survive the potential hostile effects of plasma. We investigated whether sites might exist on the surfaces of circulating blood cells for protection of infectious HIV-1 particles. Red blood cells (RBC) either from blood of uninfected normal individuals, or from blood obtained without EDTA from chronically infected HIV-1 patients, invariably contained a small number of RBC having attached platelets as determined by flow cytometry, light microscopy, and immunofluorescence microscopy. After mixing normal RBC with platelet-rich plasma, discrete populations of RBC, platelets, and complexes of platelets attached to RBC were purified by fluorescence-activated cell sorting. Upon incubation of purified cells or platelets with HIV-1 followed by washing and co-incubation with CD4-positive peripheral blood mononuclear cells (PBMC), platelets, and platelet-RBC complexes, but not platelet-free RBC, caused infection of PBMC. Infection was prevented by pre-treating the platelet-RBC complexes with EDTA. Plasma and RBC (comprising a RBC/platelet-RBC mixture) from chronically infected patients with low viral loads were also co-incubated with PBMC ex vivo to determine the presence of infectious HIV-1. All freshly isolated plasmas from the HIV-1-infected donors, obtained in the absence of anticoagulant, were noninfectious. Interestingly, the RBC from most of the patients caused cell-cell infection of PBMC that was prevented by stripping the RBC with EDTA. A monoclonal antibody to DC-SIGN partially inhibited cell-cell HIV-1 infection of PBMC by normal RBC pre-incubated with platelets and HIV-1. We conclude: (a) platelet-free EDTA-free plasma from chronically infected HIV-1 patients, although containing viral RNA, is an environment that lacks detectable infectious HIV-1; (b) platelets and platelet-RBC complexes, but not purified RBC, bind infectious HIV-1; (c) DC-SIGN, and possibly other C-type lectins, may represent binding sites for infectious HIV-1 on platelets and platelet-RBC complexes.  相似文献   
986.
Alterations in retinal blood flow can contribute to, or be a consequence of, ocular disease and visual dysfunction. Therefore, quantitation of altered perfusion can aid research into the mechanisms of retinal pathologies. Intravital video microscopy of fluorescent tracers can be used to measure vascular diameters and bloodstream velocities of the retinal vasculature, specifically the arterioles branching from the central retinal artery and of the venules leading into the central retinal vein. Blood flow rates can be calculated from the diameters and velocities, with the summation of arteriolar flow, and separately venular flow, providing values of total retinal blood flow. This paper and associated video describe the methods for applying this technique to mice, which includes 1) the preparation of the eye for intravital microscopy of the anesthetized animal, 2) the intravenous infusion of fluorescent microspheres to measure bloodstream velocity, 3) the intravenous infusion of a high molecular weight fluorescent dextran, to aid the microscopic visualization of the retinal microvasculature, 4) the use of a digital microscope camera to obtain videos of the perfused retina, and 5) the use of image processing software to analyze the video. The same techniques can be used for measuring retinal blood flow rates in rats.  相似文献   
987.
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.Since the publication of DNA Repair and Mutagenesis in 2006 (Friedberg et al. 2006), our understanding of bacterial DNA damage responses has progressed significantly. Some studies have refined known pathways and filled in important details, whereas other studies have uncovered surprising new pathways such as bacterial programmed cell death and a form of replicative repair that reconstitutes severely shattered genomes. This review will focus on these recent advances, with only limited discussion and citation to work that precedes the 2006 tome.  相似文献   
988.
By some estimates, a eukaryotic cell must repair up to 10,000 DNA lesions per cell cycle to counteract endogenous sources of DNA damage. Exposure to environmental toxins, UV sources, or other radiations only increases this enormous number. Failure to repair such lesions can lead to a deleterious mutation rate, genomic instability, or cell death. The timely and efficient repair of eukaryotic DNA damage is further complicated by the realization that DNA lesions must be detected and repaired in the context of chromatin with its complex organization within the nucleus. Numerous studies have shown that chromatin packaging can inhibit nearly all repair pathways, and recent work has defined specific mechanisms that facilitate DNA repair within the chromatin context. In this review, we provide a broad overview of chromatin regulatory mechanisms, mainly at the nucleosomal level, and then focus on recent work that elucidates the role of chromatin structure in regulating the timely and efficient repair of DNA double-strand breaks (DSBs).Although we tend to worry the most about environmental sources of DNA damage (e.g., chemical agents, UV radiation, ionizing radiation), it seems likely that much of the DNA repair machinery has evolved to contend with DNA lesions generated by the by-products of cellular metabolism—reactive oxygen species, endogenous alkylating agents, and DNA single- and double-strand breaks resulting from collapsed DNA replication forks or from oxidative destruction of deoxyribose residues (Lindahl and Wood 1999; Lindahl 2000). To combat the diversity of DNA lesions, cells have evolved a complex DNA damage response (DDR) that can engage many different DNA repair pathways, including nucleotide excision repair (NER), base excision repair (BER), DNA mismatch repair (MMR), single-strand annealing (SSA), nonhomologous end joining (NHEJ), and homologous recombination (HR). In eukaryotic cells, each of these repair pathways function in the context of a nucleoprotein structure, chromatin, which can potentially occlude DNA lesions from the repair machinery, and thus can influence the efficiency of repair. Early studies that focused on the response to UV damage, led to the access/repair/restore (ARR) model for repair of DNA lesions in chromatin (Green and Almouzni 2002). A central theme of this model is that chromatin inhibits the repair process, and thus it must be disrupted before or during the repair process, and then chromatin structures must be faithfully restored at the conclusion. What has become clear in the past few years, however, is that chromatin organization also serves a positive role in the DDR, to “prime” DNA repair events, functioning as a regulatory/integration platform that ensures that DNA repair is coordinated with other cellular events (Fig. 1). Here we focus on the repair of DNA double-strand breaks (DSBs), centering on the various mechanisms that facilitate this essential repair event within a chromatin context with a particular emphasis on the nucleosomal level. We envision that the concepts and themes discussed here will also be pertinent to other repair pathways, as discussed in several recent reviews (Adam and Polo 2012; Czaja et al. 2012; Lans et al. 2012; Odell et al. 2013).Open in a separate windowFigure 1.Access/prime/repair/restore model for the role of chromatin in the DDR. Chromatin remodeling and histone modification enzymes regulate both the accessibility of the lesion to repair factors as well as providing a platform for signaling repair events to other cellular processes. See text for details.  相似文献   
989.
In this study, we demonstrated that the highest activity of thymidine phosphorylase (TP) was found in peripheral blood mononuclear (PBM) cells followed by that of thrombocytes and granulocytes whereas no activity of TP could be detected in erythrocytes. The activity of TP in leukocytes proved to be intermediate compared to the TP activity observed in PBM cells and granulocytes. The activity of TP also was readily detectable in human fibroblasts.  相似文献   
990.
A heterodinucleotide comprising BVDU and Gemcitabine bound together by a 5′,5′-pyrophospate bridge (BVDUp2dFdC) has been synthesized and evaluated as antitumor agent against AH13 rat sarcoma cells. BVDUp2dFdC showed a cytotoxicity similar to that of Gemcitabine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号