首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42542篇
  免费   3210篇
  国内免费   11篇
  2023年   244篇
  2022年   245篇
  2021年   498篇
  2020年   514篇
  2019年   533篇
  2018年   1003篇
  2017年   878篇
  2016年   1425篇
  2015年   2215篇
  2014年   2156篇
  2013年   2845篇
  2012年   3810篇
  2011年   3554篇
  2010年   2006篇
  2009年   1620篇
  2008年   2743篇
  2007年   2640篇
  2006年   2576篇
  2005年   2289篇
  2004年   2251篇
  2003年   2032篇
  2002年   1901篇
  2001年   743篇
  2000年   832篇
  1999年   502篇
  1998年   355篇
  1997年   215篇
  1996年   222篇
  1995年   232篇
  1994年   207篇
  1993年   196篇
  1992年   186篇
  1991年   154篇
  1990年   153篇
  1989年   140篇
  1988年   105篇
  1987年   82篇
  1986年   83篇
  1985年   112篇
  1984年   143篇
  1983年   85篇
  1982年   106篇
  1981年   77篇
  1980年   74篇
  1979年   67篇
  1978年   59篇
  1977年   52篇
  1976年   73篇
  1975年   60篇
  1974年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The purpose of this study was to determine the daily dietary intake of uranium (U) by the general population of Catalonia, Spain. Uranium concentrations were measured in foods widely consumed by the population living in that autonomous community. Food samples were randomly acquired in 12 representative cities of Catalonia. The dietary intake of U was estimated for various age–gender groups: children, adolescents, adults, and seniors. Fish and seafood was the food group showing the highest U concentrations (0.090 μg/g of fresh weight (fw)), followed by dairy products (0.044 μg/g fw). In contrast, the lowest U levels were found in oils and fats (0.003 μg/g fw), while in tubers and milk, U was not detected in any sample. The estimated dietary intake of U for a standard male adult of 70 kg body weight living in Catalonia was 15.48 μg/day. According to the age/gender of the population, the highest dietary intake of U corresponded to children (20.32 μg/day), while senior females was the subgroup with the lowest U intake (10.04 μg/day). Based on the tolerable daily intake established for U, the current dietary intake of this metal by the general population of Catalonia should not mean health risks for any of the different age/gender groups of consumers.  相似文献   
972.
Vector field statistical analysis of kinematic and force trajectories   总被引:1,自引:0,他引:1  
When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of ‘non-directed’ hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called ‘statistical parametric mapping’ (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems.  相似文献   
973.
Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS.  相似文献   
974.
975.
In vitro and in vivo studies suggest that the basolateral membrane of choroid plexus cells, which is in contact with blood vessels, is involved in the uptake of the reduced form of vitamin C, ascorbic acid (AA), through the sodium‐vitamin C cotransporter, (SVCT2). Moreover, very low levels of vitamin C were observed in the brains of SVCT2‐null mice. The oxidized form of vitamin C, dehydroascorbic acid (DHA), is incorporated through the facilitative glucose transporters (GLUTs). In this study, the contribution of SVCT2 and GLUT1 to vitamin C uptake in human choroid plexus papilloma (HCPP) cells in culture was examined. Both the functional activity and the kinetic parameters of GLUT1 and SVCT2 in cells isolated from HCPP were observed. Finally, DHA uptake by GLUT1 in choroid plexus cells was assessed in the presence of phorbol‐12‐myristate‐13‐acetate (PMA)‐activated human neutrophils. A marked increase in vitamin C uptake by choroid plexus cells was observed that was associated with superoxide generation and vitamin C oxidation (bystander effect). Thus, vitamin C can be incorporated by epithelial choroid plexus papilloma cells using the basolateral polarization of SVCT2 and GLUT1. This mechanism may be amplified with neutrophil infiltration (inflammation) of choroid plexus tumors.

  相似文献   

976.
The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G‐protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole‐cell patch clamp recordings were performed in rat brainstem slices from 9 to 17 day old pups. Previous results showed that leptin caused a partial blockade of sodium (INa) and h‐current (IH) in PPN neurons. TA (100 nM) reduced the blockade of INa (~ 50% reduction) and IH (~ 93% reduction) caused by leptin. Intracellular guanosine 5′‐[β‐thio]diphosphate trilithium salt (a G‐protein inhibitor) significantly reduced the effect of leptin on INa(~ 60% reduction) but not on IH (~ 25% reduction). Intracellular GTPγS (a G‐protein activator) reduced the effect of leptin on both INa (~ 80% reduction) and IH (~ 90% reduction). These results suggest that the effects of leptin on the intrinsic properties of PPN neurons are leptin receptor‐ and G‐protein dependent. We also found that leptin enhanced NMDA receptor‐mediated responses in single neurons and in the PPN population as a whole, an effect blocked by TA. These experiments further strengthen the association between leptin dysregulation and sleep disturbances.

  相似文献   

977.
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrPSC) has been studied in depth, the physiological role of PrPC remains elusive and controversial. PrPC is a cell‐surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrPC in animals and in cellular models. In this article, we present PrPC‐dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrPC over‐expression enhances cell proliferation and cell cycle re‐entrance after serum stimulation, while PrPC silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrPC in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrPC in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrPC over‐expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT‐Cdc42‐N‐WASP‐dependent pathway.

  相似文献   

978.
The stimulation by Mg2+, Na+, K+, NH4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na+, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg?1, K 0.5 = 0.10 ± 0.01 mmol L?1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg?1, K 0.5 = 1.30 ± 0.03 mmol L?1), Mg2+ (V M = 115.0 ± 4.6 U mg?1, K 0.5 = 0.96 ± 0.03 mmol L?1), NH4 + (V M = 141.0 ± 5.6 U mg?1, K 0.5 = 1.90 ± 0.04 mmol L?1), and K+ (V M = 120.0 ± 2.4 U mg?1, K M = 2.74 ± 0.08 mmol L?1) followed single saturation curves and, except for K+, exhibited site–site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L?1. Complementary inhibition studies suggest the presence of F0F1–, Na+-, or K+-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme.  相似文献   
979.
Glycosaminoglycans are biologically active polysaccharides that are found ubiquitously in the animal kingdom. The biosynthesis of these complex polysaccharides involves complicated reactions that turn the simple glycosaminoglycan backbone into highly heterogeneous structures. One of the modification reactions is the epimerization of d-glucuronic acid to its C5-epimer l-iduronic acid, which is essential for the function of heparan sulfate. Although l-iduronic acid residues have been shown to exist in polysaccharides of some prokaryotes, there has been no experimental evidence for the existence of a prokaryotic d-glucuronyl C5-epimerase. This work for the first time reports on the identification of a bacterial enzyme with d-glucuronyl C5-epimerase activity. A gene of the marine bacterium Bermanella marisrubri sp. RED65 encodes a protein (RED65_08024) of 448 amino acids that has an overall 37% homology to the human d-glucuronic acid C5-epimerase. Alignment of this peptide with the human and mouse sequences revealed a 60% similarity at the carboxyl terminus. The recombinant protein expressed in Escherichia coli showed epimerization activity toward substrates generated from heparin and the E. coli K5 capsular polysaccharide, thereby providing the first evidence for bacterial d-glucuronyl C5-epimerase activity. These findings may eventually be used for modification of mammalian glycosaminoglycans.  相似文献   
980.
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号