首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43796篇
  免费   2646篇
  国内免费   44篇
  2023年   213篇
  2022年   254篇
  2021年   548篇
  2020年   480篇
  2019年   536篇
  2018年   1136篇
  2017年   1032篇
  2016年   1736篇
  2015年   2513篇
  2014年   2328篇
  2013年   3395篇
  2012年   3765篇
  2011年   3387篇
  2010年   2269篇
  2009年   1798篇
  2008年   2800篇
  2007年   2652篇
  2006年   2595篇
  2005年   2183篇
  2004年   1973篇
  2003年   1790篇
  2002年   1650篇
  2001年   720篇
  2000年   943篇
  1999年   495篇
  1998年   302篇
  1997年   189篇
  1996年   193篇
  1995年   195篇
  1994年   162篇
  1993年   156篇
  1992年   175篇
  1991年   140篇
  1990年   122篇
  1989年   120篇
  1988年   86篇
  1987年   74篇
  1986年   79篇
  1985年   108篇
  1984年   119篇
  1983年   73篇
  1982年   95篇
  1981年   68篇
  1980年   73篇
  1979年   63篇
  1978年   49篇
  1977年   48篇
  1976年   72篇
  1975年   54篇
  1974年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Life expectancy for people diagnosed with HIV has improved dramatically however the number of new infections in the UK remains high. Understanding patterns of sexual behaviour among people living with diagnosed HIV, and the factors associated with having condom-less sex, is important for informing HIV prevention strategies and clinical care. In addition, in view of the current interest in a policy of early antiretroviral treatment (ART) for all people diagnosed with HIV in the UK, it is of particular importance to assess whether ART use is associated with increased levels of condom-less sex. In this context the ASTRA study was designed to investigate current sexual activity, and attitudes to HIV transmission risk, in a large unselected sample of HIV-infected patients under care in the UK. The study also gathered background information on demographic, socio-economic, lifestyle and disease-related characteristics, and physical and psychological symptoms, in order to identify other key factors impacting on HIV patients and the behaviours which underpin transmission. In this paper we describe the study rationale, design, methods, response rate and the demographic characteristics of the participants. People diagnosed with HIV infection attending 8 UK HIV out-patient clinics in 2011-2012 were invited to participate in the study. Those who agreed to participate completed a confidential, self-administered pen-and-paper questionnaire, and their latest CD4 count and viral load test results were recorded. During the study period, 5112 eligible patients were invited to take part in the study and 3258 completed questionnaires were obtained, representing a response rate of 64% of eligible patients. The study includes 2248 men who have sex with men (MSM), 373 heterosexual men and 637 women. Future results from ASTRA will be a key resource for understanding HIV transmission within the UK, targeting prevention efforts, and informing clinical care of individuals living with HIV.  相似文献   
992.
993.
Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.  相似文献   
994.
The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.  相似文献   
995.
996.
997.
The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle.The genetic information within the cells of our body is stored in the double helix of DNA, a long cylinderlike structure with a radius that is only 10 Å or one billionth of a meter but can be of considerable length. A single DNA molecule within a bacterium that grows in our gut flora is approximately 5 million base pairs in length and when stretched out, is about 1.6 mm in length, roughly the diameter of a pinhead. In contrast, the single DNA molecule in the largest human chromosome is 245,203,898 base pairs or about 8.33 cm long. The entire human genome, consisting of its 24 different chromosomes in a male is about 3 billion base pairs or 1 m long. Each cell in our body, with rare exceptions, contains two copies of the genome and thus 2 m of total DNA. Thus the scale and complexity of duplicating genomes is remarkable. For example, ∼2200 human cells can sit on the top of a 1.5 mm pinhead and when extracted and laid out in a line, the DNA from these cells would be ∼4.5 km (2.8 miles) long. In our body, about 500–700 million new blood cells are born every minute in the bone marrow (Doulatov et al. 2012), containing a total of about 1 million km of DNA, or enough DNA to wrap around the equator of the earth 25 times. Thus DNA replication is a serious business in our body, occurring from the time that a fertilized egg first begins duplicating DNA to yield the many trillions of cells that make up an adult body and continuing in all tissues of the adult body throughout our life. The amount of DNA duplicated in an entire human body represents an unimaginable amount of information transfer. Moreover, each round of duplication needs to be highly accurate, making one mistake in less than 100 million bases copied per cell division. How copying of the double helix occurs and how it is so highly accurate is the topic of this collection. Inevitably the processes of accurate copying of the genome can go awry, yielding mutations that affect our lives, and thus the collection outlines the disorders that accelerate human disease.However, the problem of copying DNA is much more complicated than indicated above. The 2 m of DNA in each human cell is wrapped up with histone proteins within the cell’s nucleus that is only about 5 μm wide, presenting a compaction in DNA length of about 2 million-fold. How can the copying process deal with the fact that the DNA is wrapped around proteins and scrunched into a volume that creates a spatial organization problem of enormous magnitude? Not only is the DNA copied, but the proteins associated with the DNA need to be duplicated, along with all the chemical modifications attached to DNA and histones that greatly influence developmental patterning of gene expression. The protein machineries that replicate DNA and duplicate proteins within the chromosomes are some of the most complex and intriguing machineries known. Furthermore, the regulations of the processes are some of the most complex because they need to ensure that each DNA molecule in each chromosome is copied once, and only once each time before a cell divides. Errors in the regulation of DNA replication lead to accelerated mutation rates, often associated with increased rates of cancer and other diseases.The process of accurately copying a genome can be broken down into various subprocesses that combine to provide efficient genome duplication. Central to the entire process is the machinery that actually copies the DNA with high fidelity, including proteins that start the entire process and the proteins that actually copy one helix to produce two. Superimposed on this fundamental process are mechanisms that detect and repair errors and damage to the DNA. Also associated with the DNA replication apparatus are the proteins that ensure that the histone proteins and their modifications in chromatin are inherited along with the DNA. Finally, other machineries cooperate with the DNA replication apparatus to ensure that the resulting two DNA molecules, the sister chromatids, are tethered together until the cell completes duplicating all of its DNA and segregates the sister chromatids evenly to the two daughter cells. Only by combining all of these processes can genetic inheritance ensure that each cell has a faithful copy of its parent’s genome.  相似文献   
998.
Rhizobium leguminosarum bv. trifolii strain TA1 is an aerobic, motile, Gram-negative, non-spore-forming rod that is an effective nitrogen fixing microsymbiont on the perennial clovers originating from Europe and the Mediterranean basin. TA1 however is ineffective with many annual and perennial clovers originating from Africa and America. Here we describe the features of R. leguminosarum bv. trifolii strain TA1, together with genome sequence information and annotation. The 8,618,824 bp high-quality-draft genome is arranged in a 6 scaffold of 32 contigs, contains 8,493 protein-coding genes and 83 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   
999.
Combining quantum-mechanical (QM) calculations with quantum theory of atoms in molecules (QTAIM) and using the methodology of sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), we showed for the first time that the biologically important A?A* base pair (Cs symmetry) formed by the amino and imino tautomers of adenine (A) tautomerizes via asynchronous concerted double proton transfer (DPT) through a transition state (TS), which is the A+?A? zwitterion with the separated charge, with Cs symmetry. The nine key points, which can be considered as electron-topological “fingerprints” of the asynchronous concerted A?A*?A*?A tautomerization process via the DPT, were detected and completely investigated along the IRC of the A?A*?A*?A tautomerization. Based on the sweeps of the H-bond energies, it was found that intermolecular antiparallel N6Н?N6 (7.01 kcal mol?1) and N1H?N1 (6.88 kcal mol?1) H-bonds are significantly cooperative and mutually reinforce each other. It was shown for the first time that the A?A*?A*?A tautomerization is assisted by the third C2H?HC2 dihydrogen bond (DHB), which, in contrast to the two others N6H?N6 and N1H?N1 H-bonds, exists within the IRC range from ?2.92 to 2.92 Å. The DHB cooperatively strengthens, reaching its maximum energy 0.42 kcal mol?1 at IRC?=??0.52 Å and minimum energy 0.25 kcal mol?1 at IRC?=??2.92 Å, and is accompanied by strengthening of the two other aforementioned classical H-bonds. We established that the C2H?HC2 DHB completely satisfies the electron-topological criteria for H-bonding, in particular Bader’s and all eight “two-molecule” Koch and Popelier’s criteria. The positive value of the Grunenberg’s compliance constant (5.203 Å/mdyn) at the TSA?A*?A*?A proves that the C2H?HC2 DHB is a stabilizing interaction. NBO analysis predicts transfer of charge from σ(C2–H) bonding orbital to σ*(H–C2) anti-bonding orbital; at this point, the stabilization energy E(2) is equal to 0.19 kcal mol?1 at the TSA?A*?A*?A.  相似文献   
1000.
Coumarin ( 1 ) and kaurane‐type diterpenes are considered the bioactive constituents of Mikania glomerata and M. laevigata, used in Brazil to treat respiratory affective disorders. The seasonal variation of 1 , ortho‐coumaric acid ( 2 ), benzoylgrandifloric acid ( 3 ), cinnamoylgrandifloric acid ( 4 ), and kaurenoic acid ( 5 ) in leaves of both species, cultivated in full sunlight and under shade levels of 40 and 80%, was quantified by HPLC. Compound 2 was detected solely in M. laevigata in concentrations below the limit of quantification. Coumarin was not found in M. glomerata, whereas its concentration reached 0.94±0.24% (w/w) in M. laevigata farmed in summer under 80% shading. Both Mikania species produced higher amounts of kaurane diterpenes when cultivated in plenty of sunlight. Hence, maximum contents of 1 are reached in M. laevigata cultivated under high shading, but with reduced concentrations of 3 – 5 . Conversely, M. glomerata should be cultivated under full sunlight and harvested in winter for highest concentrations of kaurane‐type diterpenes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号