首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1252篇
  免费   131篇
  2022年   8篇
  2021年   13篇
  2020年   11篇
  2019年   9篇
  2018年   17篇
  2017年   14篇
  2016年   33篇
  2015年   48篇
  2014年   47篇
  2013年   51篇
  2012年   76篇
  2011年   68篇
  2010年   51篇
  2009年   36篇
  2008年   65篇
  2007年   53篇
  2006年   50篇
  2005年   53篇
  2004年   47篇
  2003年   44篇
  2002年   41篇
  2001年   38篇
  2000年   42篇
  1999年   44篇
  1998年   23篇
  1997年   19篇
  1996年   31篇
  1995年   21篇
  1994年   22篇
  1993年   15篇
  1992年   25篇
  1991年   19篇
  1990年   20篇
  1989年   28篇
  1988年   19篇
  1987年   20篇
  1986年   16篇
  1985年   12篇
  1984年   12篇
  1983年   9篇
  1982年   13篇
  1981年   7篇
  1979年   14篇
  1978年   8篇
  1976年   8篇
  1975年   12篇
  1973年   8篇
  1972年   6篇
  1971年   5篇
  1968年   6篇
排序方式: 共有1383条查询结果,搜索用时 203 毫秒
71.
Abstract

We have used one and two dimensional exchange 1H NMR spectroscopy to characterize the dynamics of the binding of a homodimeric thiazole orange dye, 1,1′-(4,4,8,8-tetramethyl-4,8-diaza-undecamethylene)-bis-4-(3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene)-quinolinium tetraiodide (TOTO), to double stranded DNA (dsDNA). The double stranded oligonucleotides used were d-(CGCTAGCG)2 ( 1 ) and d(CGCTAGCTAGCG)2 ( 2 ). TOTO binds preferentially to the (5′-CTAG-3′)2 sites and forms mixtures of 1:1 and 1:2 dsDNA-TOTO complexes with 2 in ratios dependent on the relative amount of TOTO and the oligonucleotide in the sample. The dynamic exchange between preferential binding sites in the case of a 2:1 1 -TOTO mixture is an intermolecular exchange process between two binding sites on different oligonucleotides. In the case of the 1:1 2 -TOTO complex an intramolecular exchange process occur between two different binding sites on the same strand. Both processes were studied. The results demonstrate the ability of TOTO to migrate along a dsDNA strand in an intramolecular exchange process. The migration process (“creeping”) along the DNA strand is 6 times faster than the rate of intermolecular exchange between sites in two different oligonucleotides.  相似文献   
72.
Abstract

LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2′-0, 4′-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional'H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32Å. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3Å. The average twist over the sequence are 35.9° ± 0.3°. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5′-CTLAG-3′ site than in the unmodified 5′-CTLAG-3′ site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   
73.

Key message

We report for the first time that expression of potato PR10a gene in faba bean causes enhanced tolerance to drought and salinity.

Abstract

Grain legumes such as soybean (Glycine max L. Merrill), pea (Pisum sativum L.) and faba bean (Vicia faba L.) are staple sources of protein for human and animal nutrition. Among grain legumes, faba bean is particularly sensitive to abiotic stress (in particular osmotic stress due to lack of water or enhanced soil salinity) and often suffers from severe yield losses. Many stress responsive genes have been reported with an effect on improving stress tolerance in model plants. Pathogenesis-related proteins are expressed by all plants in response to pathogen infection and, in many cases, in response to abiotic stresses as well. The PR10a gene isolated from the potato cultivar Desiree was selected for this study due to its role in enhancing salt and/or drought tolerance in potato, and transferred into faba bean cultivar Tattoo by Agrobacterium tumefaciens-mediated transformation system based upon direct shoot regeneration after transformation of meristematic cells derived from embryo axes. The transgene was under the control of the constitutive mannopine synthase promoter (p-MAS) in a dicistronic binary vector, which also contained luciferase (Luc) gene as scorable marker linked by internal ribosome entry site elements. Fertile transgenic faba bean plants were recovered. Inheritance and expression of the foreign genes were demonstrated by PCR, RT-PCR, Southern blot and monitoring of Luciferase activity. Under drought condition, after withholding water for 3 weeks, the leaves of transgenic plants were still green, while non-transgenic plants (WT) wilted and turned brown. Twenty-four hours after re-watering, the leaves of transgenic plants remained green, while WT plants did not recover. Moreover, the transgenic lines displayed higher tolerance to NaCl stress. Our results suggested that introducing a novel PR10a gene into faba bean could be a promising approach to improve its drought and salt tolerance ability, and that MAS promoter is not only constitutive, but also wound-, auxin/cytokinin- as well as stress-inducible.  相似文献   
74.

Aims

Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated if bicarbonate can be used to introduce 14C (or 13C) into white clover and ryegrass, and (ii) compared the patterns of 14C and 15N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches.

Methods

Perennial ryegrass and white clover were pulse labeled with 15N urea via leaf-labeling and 14C either via a 14CO2 atm or with 14C bicarbonate through leaf-labeling. Plants were sampled 4 days after labeling and prepared for bulk isotope analysis and for 14C imaging to identify plant parts with high and low 14C activity. Subsequently, plant parts with high and low 14C activity were separated and analyzed for 15N enrichment.

Results

Bicarbonate applied by leaf-labeling efficiently introduced 14C into both white clover and ryegrass, although the 14C activity in particular for white clover was found predominantly in the labeled leaf. Using 14C imaging for identification of areas with high (hotspots) and low 14C activity showed that 14C was incorporated very heterogeneously both when using bicarbonate and CO2 as expected when using pulse labeling. Subsequent analysis of 15N enrichment in plant parts with high and low 14C activity showed that 15N also had a heterogeneous distribution (up to two orders of magnitude).

Conclusion

Bicarbonate can efficiently be used to introduce 14C or 13C into plant via the leaf-labeling method. Both 14C and 15N showed heterogeneous distribution in the plant, although the distribution of 15N was more even than that of 14C.  相似文献   
75.
76.
Variation in inhibition of real-time PCR was investigated with DNA extracts from 50 aquifer sediment core samples of 5 cm length collected through a 2.5 meter vertical profile across a landfill leachate plume. The inhibition was quantified using an internal control of the green fluorescent protein ( gfp ) gene, which was spiked into the real-time PCR reactions. The inhibition was investigated at two gfp gene concentrations: at 1.7 · 10 7 gfp gene copies/g sediment (5.1 · 10 4 gfp gene copies/PCR reaction) and at 1.7 · 10 5 gfp gene copies/g sediment (5.1 · 10 2 gfp gene copies/PCR reaction). Despite the low TOC content of the sediment (average 0.4 mg C/g dw) the average real-time PCR response was partially inhibited, compared to a reference (pure water), at both high and low gfp concentrations. The relative amplification (reference = 1) was 0.85 ± 0.20 (high) and 0.66 ± 0.23 (low), showing significantly (P < 0.05) stronger inhibition at the lower target gene concentration. The inhibition of the real-time PCR did not show a systematic variation in the vertical profile related to plume position but variations were significant on a small scale of 5–15 cm depth intervals. One of the 50 samples failed to produce a signal with either concentration of the gfp internal control and three other samples inhibited real-time PCR at both high and low gfp concentration. These 4 samples, which were the samples with the highest inhibition, were the only DNA extracts with a visible brown colouration, indicating contents of humic-like substances. Elevated absorbance at 400 nm of these samples also indicated that humic-like substances were responsible for inhibition. However, other factors not associated with either absorbance or TOC may have contributed to the inhibition in less inhibited samples since the variation in real-time PCR response could not be sufficiently explained by absorbance or TOC. The results of this study suggest that an internal control is needed in real-time PCR reactions with DNA from environmental samples due to variation in inhibition to correctly quantify the number of target genes, especially at low target gene concentrations, when dilution of DNA extracts is not practical.  相似文献   
77.
78.
Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na+ under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na+ in the shoot. Increased leaf sap K+, controlled Na+ loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.  相似文献   
79.
Reduced representation genome sequencing such as restriction‐site‐associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single‐nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome‐wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome‐wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19 703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long‐term effective population size was estimated to range between 132 000 and 1 320 000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.  相似文献   
80.
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号