首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   90篇
  2021年   9篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   11篇
  2015年   15篇
  2014年   20篇
  2013年   31篇
  2012年   40篇
  2011年   52篇
  2010年   22篇
  2009年   31篇
  2008年   30篇
  2007年   45篇
  2006年   20篇
  2005年   17篇
  2004年   15篇
  2003年   9篇
  2002年   15篇
  2001年   24篇
  2000年   16篇
  1999年   19篇
  1998年   11篇
  1997年   6篇
  1996年   13篇
  1995年   11篇
  1994年   3篇
  1992年   12篇
  1991年   9篇
  1990年   8篇
  1989年   10篇
  1988年   7篇
  1987年   19篇
  1986年   9篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1979年   9篇
  1976年   10篇
  1975年   6篇
  1974年   10篇
  1973年   10篇
  1972年   4篇
  1970年   3篇
  1969年   5篇
  1967年   3篇
  1953年   2篇
排序方式: 共有692条查询结果,搜索用时 140 毫秒
91.
92.
In the gills of rainbow trout and Atlantic salmon, the alpha1a- and alpha1b-isoforms of Na,K-ATPase are expressed reciprocally during salt acclimation. The alpha1a-isoform is important for Na(+) uptake in freshwater, but the molecular basis for the functional differences between the two isoforms is not known. Here, three amino acid substitutions are identified in transmembrane segment 5 (TM5), TM8 and TM9 of the alpha1a-isoform compared to the alpha1b-isoform, and the functional consequences are examined by mutagenesis and molecular modeling on the crystal structures of Ca-ATPase or porcine kidney Na,K-ATPase. In TM5 of the alpha1a-isoform, a lysine substitution, Asn783 --> Lys, inserts the epsilon-amino group in cation site 1 in the E(1) form to reduce the Na(+)/ATP ratio. In the E(2) form the epsilon-amino group approaches cation site 2 to force ejection of Na(+) to the blood phase and to interfere with binding of K(+). In TM8, a Asp933 --> Val substitution further reduces K(+) binding, while a Glu961 --> Ser substitution in TM9 can prevent interaction of FXYD peptides with TM9 and alter Na(+) or K(+) affinities. Together, the three substitutions in the alpha1a-isoform of Na,K-ATPase act to promote binding of Na(+) over K(+) from the cytoplasm, to reduce the Na(+)/ATP ratio and the work done in one Na,K pump cycle of active Na(+) transport against the steep gradient from freshwater (10-100 microM: Na(+)) to blood (160 mM: Na(+)) and to inhibit binding of K(+) to allow Na(+)/H(+) rather than Na(+)/K(+) exchange.  相似文献   
93.

Background

Infants born at extreme prematurity (below 28 weeks' gestation) are at high risk of developmental disability. A major risk factor for disability is having a low level of thyroid hormone which is recognised to be a frequent phenomenon in these infants. At present it is unclear whether low levels of thyroid hormone are a cause of disability, or a consequence of concurrent adversity.

Methods

We propose an explanatory multi-centre double blind randomised controlled trial of thyroid hormone supplementation in babies born below 28 weeks' gestation. All infants will receive either levothyroxine or placebo until 32 weeks' corrected gestational age. The primary outcome will be brain growth. This will be assessed by the width of the sub-arachnoid space measured using cranial ultrasound and head circumference at 36 weeks' corrected gestational. The secondary outcomes will be (a) thyroid hormone concentrations measured at increasing postnatal age, (b) status of the hypothalamic pituitary axis, (c) auxological data between birth and 36 weeks' corrected gestational age, (d) thyroid gland volume, (e) volumes of brain structures (measured by magnetic resonance imaging), (f) determination of the extent of myelination and white matter integrity (measured by diffusion weighted MRI) and brain vessel morphology (measured by magnetic resonance angiography) at expected date of delivery and (g) markers of morbidity including duration of mechanical ventilation and chronic lung disease. We will also examine how activity of the hypothalamic-pituitary-adrenal axis modulates the effects of thyroid supplementation. This will contribute to decisions about which confounding variables to assess in large-scale studies.

Trial registration

Current Controlled Trials ISRCTN89493983  相似文献   
94.
Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.  相似文献   
95.
We investigated whether a cooling vest worn during an active warm-up enhances 5-km run time in the heat. Seventeen competitive runners (9 men, maximal oxygen uptake = 66.7 +/- 5.9 ml x kg(-1) x min(-1); 8 women, maximal oxygen uptake = 58.0 +/- 3.2 ml x kg(-1) x min(-1)) completed two simulated 5-km runs on a treadmill after a 38-min active warm-up during which they wore either a T-shirt (C) or a vest filled with ice (V) in a hot, humid environment (32 degrees C, 50% relative humidity). Wearing the cooling vest during warm-up significantly (P < 0.05) blunted increases in body temperature, heart rate (HR), and perception of thermal discomfort during warm-up compared with control. At the start of the 5-km run, esophageal, rectal, mean skin, and mean body temperatures averaged 0.3, 0.2, 1.8, and 0.4 degrees C lower; HR averaged 11 beats/min lower; and perception of thermal discomfort (5-point scale) averaged 0.6 point lower in V than C. Most of these differences were eliminated during the first 3.2 km of the run, and these variables were not different at the end. The 5-km run time was significantly lower (P < 0.05) by 13 s in V than C, with a faster pace most evident during the last two-thirds of the run. We conclude that a cooling vest worn during active warm-up by track athletes enhances 5-km run performance in the heat. Reduced thermal and cardiovascular strain and perception of thermal discomfort in the early portion of the run appear to permit a faster pace later in the run.  相似文献   
96.
Background: In Saccharomyces cerevisiae the mitotic-exit network (MEN) functions in anaphase to promote the release of the Cdc14p phosphatase from the nucleolus. This release causes mitotic exit via inactivation of the cyclin-dependent kinase (Cdk). Cdc14p-like proteins are highly conserved; however, it is unclear if these proteins regulate mitotic exit as in S. cerevisiae. In Schizosaccharomyces pombe a signaling pathway homologous to the MEN and termed the septation initiation network (SIN) is required not for mitotic exit, but for initiation of cytokinesis and for a cytokinesis checkpoint that inhibits further cell cycle progression until cytokinesis is complete.Results: We have identified the S. pombe Cdc14p homolog, Clp1p, and show that it is not required for mitotic exit but rather functions together with the SIN in coordinating cytokinesis with the nuclear-division cycle. As cells enter mitosis, Clp1p relocalizes from the nucleolus to the spindle and site of cell division. Clp1p exit from the nucleolus does not depend on the SIN, but the SIN is required for keeping Clp1p out of the nucleolus until completion of cytokinesis. Clp1p, in turn, may promote the activation of the SIN by antagonizing Cdk activity until cytokinesis is complete and thus ensuring that cytokinesis is completed prior to the initiation of the next cell cycle. In addition to its roles in anaphase, Clp1p regulates the G2/M transition since cells deleted for clp1 enter mitosis precociously and cells overexpressing Clp1p delay mitotic entry. Unlike Cdc14p, Clp1p appears to antagonize Cdk activity by preventing dephosphorylation of Cdc2p on tyrosine.Conclusions: S. pombe Clp1p affects cell cycle progression in a markedly different manner than its S. cerevisiae homolog, Cdc14p. This finding raises the possibility that related phosphatases in animal cells will prove to have important roles in coordinating the onset of cytokinesis with the events of mitosis.  相似文献   
97.
98.
99.
Aspergillus niger Mulder strain when grown on a synthetic medium containing urea as the sole source of nitrogen at pH 5.2, formed a mixture of citric and gluconic acids. On growing the organism at pH 2.0 the gluconic acid content was reduced but citric acid yield remained low. Addition of NH4NO3 to the medium lowered the gluconic acid yields to undetectable levels with a simultaneous increase in the citric acid content. Of the sugars used for the production of citric acid, sucrose in an unautoclaved medium was found to be the best carbon source. Sucrose medium if autoclaved at pH 2.0, or a mixture of glucose and fructose instead of sucrose gave lower yields of citric acid. Under optimum conditions only citric acid was produced and the yield was 66-68 per litre after a growth period of about 10 days.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号