首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7396篇
  免费   544篇
  国内免费   1篇
  7941篇
  2023年   50篇
  2022年   93篇
  2021年   151篇
  2020年   148篇
  2019年   152篇
  2018年   194篇
  2017年   192篇
  2016年   271篇
  2015年   423篇
  2014年   402篇
  2013年   519篇
  2012年   584篇
  2011年   563篇
  2010年   408篇
  2009年   357篇
  2008年   424篇
  2007年   426篇
  2006年   436篇
  2005年   365篇
  2004年   351篇
  2003年   301篇
  2002年   279篇
  2001年   66篇
  2000年   60篇
  1999年   75篇
  1998年   67篇
  1997年   56篇
  1996年   40篇
  1995年   47篇
  1994年   32篇
  1993年   38篇
  1992年   21篇
  1991年   27篇
  1990年   29篇
  1989年   16篇
  1988年   16篇
  1987年   22篇
  1986年   18篇
  1985年   20篇
  1984年   22篇
  1983年   24篇
  1982年   19篇
  1981年   19篇
  1980年   11篇
  1977年   15篇
  1976年   9篇
  1975年   11篇
  1974年   13篇
  1973年   11篇
  1971年   8篇
排序方式: 共有7941条查询结果,搜索用时 0 毫秒
21.
22.
Antimicrobial polypeptides (AMPPs), consisting of peptides and small proteins with antimicrobial activity, are an integral component of innate immunity. Their often potent properties and widespread prevalence in fish suggests that designing means of manipulating their levels has considerable potential for maintaining or improving fish health. There is evidence that a number of chronic stresses lead to significant downregulation of AMPPs and thus their monitoring could be a highly sensitive measure of health status and risk of an infectious disease outbreak. Conversely, upregulation of AMPP expression could be used to enhance disease resistance in stressful environments, as well as improve the efficacy of traditional antimicrobial drugs. However, further work is required in linking levels of a number of AMPPs to physiological function since, while a number of studies have documented the down- or upregulation of AMPPs via gene expression, relatively few studies have quantitatively examined changes in protein expression. In addition, not all AMPPs appear to be expressed at microbicidal levels in vivo, suggesting that at least some may have functions other than being directly protective. Nonetheless, in fish, there is evidence that some constitutively expressed AMPPs, such as piscidins and histone-like proteins, are expressed at microbicidal levels and that they decline with stress. Furthermore, certain AMPPs derived from hemoglobin-β are upregulated to microbicidal levels after experimental challenge. The likely widespread distribution of these three AMPP groups in fish provides the opportunity to design strategies to greatly improve the health of cultured fish populations.  相似文献   
23.
Mimetic wing coloration evolves in butterflies in the context of predator confusion. Unless butterfly eyes have adaptations for discriminating mimetic color variation, mimicry also carries a risk of confusion for the butterflies themselves. Heliconius butterfly eyes, which express recently duplicated ultraviolet (UV) opsins, have such an adaptation. To examine bird and butterfly color vision as sources of selection on butterfly coloration, we studied yellow wing pigmentation in the tribe Heliconiini. We confirmed, using reflectance and mass spectrometry, that only Heliconius use 3-hydroxy-DL-kynurenine (3-OHK), which looks yellow to humans but reflects both UV- and long-wavelength light, whereas butterflies in related genera have chemically unknown yellow pigments mostly lacking UV reflectance. Modeling of these color signals reveals that the two UV photoreceptors of Heliconius are better suited to separating 3-OHK from non-3-OHK spectra compared with the photoreceptors of related genera or birds. The co-occurrence of potentially enhanced UV vision and a UV-reflecting yellow wing pigment could allow unpalatable Heliconius private intraspecific communication in the presence of mimics. Our results are the best available evidence for the correlated evolution of a color signal and color vision. They also suggest that predator visual systems are error prone in the context of mimicry.  相似文献   
24.
25.
26.
Alzheimer disease is a progressive neurodegenerative brain disorder that leads to major debilitating cognitive deficits. It is believed that the alterations capable of causing brain circuitry dysfunctions have a slow onset and that the full blown disease may take several years to develop. Therefore, it is important to understand the early, asymptomatic, and possible reversible states of the disease with the aim of proposing preventive and disease-modifying therapeutic strategies. It is largely unknown how amyloid β-peptide (Aβ), a principal agent in Alzheimer disease, affects synapses in brain neurons. In this study, we found that similar to other pore-forming neurotoxins, Aβ induced a rapid increase in intracellular calcium and miniature currents, indicating an enhancement in vesicular transmitter release. Significantly, blockade of these effects by low extracellular calcium and a peptide known to act as an inhibitor of the Aβ-induced pore prevented the delayed failure, indicating that Aβ blocks neurotransmission by causing vesicular depletion. This new mechanism for Aβ synaptic toxicity should provide an alternative pathway to search for small molecules that can antagonize these effects of Aβ.  相似文献   
27.
28.
Aims Deforestation and biodiversity loss are two alarming, closely related problems, and the main factors triggering changes in land use. Indigenous agricultural practices in the western Amazon Basin are known as chakras, and their structure and dynamics are seemingly optimal for forest management. However, the variability in tree species and the degree of forest recovery after abandonment is poorly documented in this agroforestry system (AFS). The goals of this study were: (i) to investigate whether the different AFSs (chakras) preserve similar levels of forest diversity, (ii) to determine the effect of transformation of mature forests (MF) to chakras, in particular, forest alpha and beta diversity levels, and (iii) to investigate whether native tree species recovery leads to the original forest structure following chakra abandonment.  相似文献   
29.
30.
Salt stress can suppress the immune function of fish and other aquatic animals, but such an effect has not yet been examined in air-breathing vertebrates that frequently cope with waters (and prey) of contrasting salinities. We investigated the effects of seawater salinity on the strength and cost of mounting an immune response in the dunlin Calidris alpina, a long-distance migratory shorebird that shifts seasonally from freshwater environments during the breeding season to marine environments during migration and the winter period. Phytohaemagglutinin (PHA)-induced skin swelling, basal metabolic rate (BMR), body mass, fat stores, and plasma ions were measured in dunlins acclimated to either freshwater or seawater (salinity: 0.3 and 35.0 ‰, respectively). Seawater-acclimated dunlins mounted a PHA-induced swelling response that was up to 56 % weaker than those held under freshwater conditions, despite ad libitum access to food. Freshwater-acclimated dunlins significantly increased their relative BMR 48 h after PHA injection, whereas seawater-acclimated dunlins did not. However, this differential immune and metabolic response between freshwater- and seawater-acclimated dunlins was not associated with significant changes in body mass, fat stores or plasma ions. Our results indicate that the strength of the immune response of this small-sized migratory shorebird was negatively influenced by the salinity of marine habitats. Further, these findings suggest that the reduced immune response observed under saline conditions might not be caused by an energy or nutrient limitation, and raise questions about the role of osmoregulatory hormones in the modulation of the immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号