首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   37篇
  2023年   2篇
  2021年   5篇
  2018年   1篇
  2017年   3篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   16篇
  2011年   5篇
  2010年   8篇
  2009年   3篇
  2008年   10篇
  2007年   7篇
  2006年   7篇
  2005年   9篇
  2004年   12篇
  2003年   11篇
  2002年   10篇
  2001年   11篇
  2000年   7篇
  1999年   12篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   5篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1961年   1篇
排序方式: 共有271条查询结果,搜索用时 31 毫秒
71.
Monoterpene cyclization reactions are initiated by ionization and isomerization of geranyl diphosphate, and proceed, via cyclization of bound linalyl diphosphate, through a series of carbocation intermediates with ultimate termination of the multistep cascade by deprotonation or nucleophile capture. Three structurally and mechanistically related monoterpene cyclases from Salvia officinalis, (+)-sabinene synthase (deprotonation to olefin), 1,8-cineole synthase (water capture), and (+)-bornyl diphosphate synthase (diphosphate capture), were employed to explore the structural determinants of these alternative termination chemistries. Results with chimeric recombinant enzymes, constructed by reciprocally substituting regions of sabinene synthase with the corresponding sequences from bornyl diphosphate synthase or 1,8-cineole synthase, demonstrated that exchange of the C-terminal catalytic domain is sufficient to completely switch the resulting product profile. Exchange of smaller sequence elements identified a region of roughly 70 residues from 1,8-cineole synthase that, when substituted into sabinene synthase, conferred the ability to produce 1,8-cineole. A similar strategy identified a small region of bornyl diphosphate synthase important in conducting the anti-Markovnikov addition to the bornane skeleton. Observations made with these chimeric monoterpene cyclases are discussed in the context of the recently determined crystal structure for bornyl diphosphate synthase.  相似文献   
72.
73.
The essential oil from mature leaves of flowering peppermint (Mentha piperita L.) contains up to 15% (—)-menthyl acetate, and leaf discs converted exogenous (—)-[G-3H]menthol into this ester in approximately 15% yield of the incorporated precursor. Leaf extracts catalyzed the acetyl coenzyme A-dependent acetylation of (—)-[G-3H]menthol and the product of this transacetylase reaction was identified by radiochromatographic techniques. Transacetylase activity was located mainly in the 100,000g supernatant fraction, and the preparation was partially purified by combination of Sephadex G-100 gel filtration and chromatography on O-diethylaminoethyl-cellulose. The transacetylase had a molecular weight of about 37,000 as judged by Sephadex G-150 gel filtration, and a pH optimum near 9. The apparent Km and velocity for (—)-menthol were 0.3 mm and 16 nmol/hr· mg of protein, respectively. The saturation curve for acetyl coenzyme A was sigmoidal, showing apparent saturation near 0.1 mm. Dithioerythritol was required for maximum activity and stability of the enzyme, and the enzyme was inhibited by thiol directed reagents such as p-hydroxymercuribenzoate. Diisopropylfluorophosphate also inhibited transacylation suggesting the involvement of a serine residue in catalysis. The transacylase was highly specific for acetyl coenzyme A; propionyl coenzyme A and butyryl coenzyme A were not nearly as efficient as acyl donors (11% and 2%, respectively). However, the enzyme was much less selective with regard to the alcohol substrate, suggesting that the nature of the acetate ester synthesized in mint is more dependent on the type of alcohol available than on the specificity of the transacetylase. This is the first report on an enzyme involved in monoterpenol acetylation in plants. A very similar enzyme, catalyzing this key reaction in the metabolism of menthol, was also isolated from the flowers of peppermint.  相似文献   
74.
The volatile oil of immature Artemisia absinthium L. leaves contains sabinyl acetate (42%), 3-thujone (32%), sabinene (12%), and α-thujene (3%) as major constitutents, and label from the acyclic precursor [1-3H]geraniol was incorporated, under aerobic conditions, into these thujane-type monoterpenes in proportion to their natural abundance in this tissue. Light had little effect on the synthesis of these monoterpenes from exogenous geraniol; however, at reduced oxygen levels, label from geraniol accumulated in the olefin sabinene while much less sabinyl acetate and 3-thujone were formed, suggesting a route to the ester and ketone by the allylic, nonphotochemical, oxygenation of sabinene. Supporting evidence for the intermediary role of the olefin was provided by isotopic dilution studies in which sabinene, but not α-thujene, blocked formation of the oxygenated derivatives from the labeled precursor. [10-3H]Sabinene was incorporated directly as a substrate in A. absinthium leaves into both [10-3H]sabinyl acetate and 3-[10-3H]thujone. Furthermore, [3H]sabinene was specifically incorporated into 3-thujone in Tanacetum vulgare and into the diastereomeric ketone 3-isothujone in Salvia officinalis, confirming the role of this bicyclic olefin as the essential precursor of C(3)-oxygenated thujane monoterpenes.  相似文献   
75.
The monoterpene ketone l-menthone is specifically converted to l-menthol and l-menthyl acetate and to d-neomenthol and d-neomenthyl-beta-d-glucoside in mature peppermint (Mentha piperita L. cv. Black Mitcham) leaves. The selectivity of product formation results from compartmentation of the menthol dehydrogenase with the acetyl transferase and that of the neomenthol dehydrogenase with the glucosyl transferase. Soluble enzyme preparations, but not particulate preparations, from mature peppermint leaves catalyzed the NADPH-dependent reduction of l-menthone to both epimeric alcohols, and the two dehydrogenases responsible for these stereospecific transformations were resolved by affinity chromatography on Mātrex Gel Red A. Both enzymes have a molecular weight of approximately 35,000, possess a K(m) for NADPH of about 2 x 10(-5)m, are very sensitive to inhibition by thiol-directed reagents, and are not readily reversible. The menthol dehydrogenase showed a pH optimum at 7.5, exhibited a K(m) for l-menthone of about 2.5 x 10(-4)m, and also reduced d-isomenthone to d-neoisomenthol. The neomenthol dehydrogenase showed a pH optimum at 7.6, exhibited a K(m) for l-menthone of about 2.2 x 10(-5)m, and also reduced d-isomenthone to d-isomenthol. These stereochemically distinct, but otherwise similar, enzymes are of key importance in determining the metabolic fate of menthone in peppermint, and they are probably typical of the class of dehydrogenases thought to be responsible for the metabolism of monoterpene ketones during plant development.  相似文献   
76.
To maximize redox coupling efficiency with recombinant cytochrome P450 hydroxylases from yew (Taxus) species installed in yeast for the production of the anticancer drug Taxol, a cDNA encoding NADPH:cytochrome P450 reductase from T. cuspidata was isolated. This single-copy gene (2,154 bp encoding a protein of 717 amino acids) resembles more closely other reductases from gymnosperms (approximately 90% similarity) than those from angiosperms (<80% similarity). The recombinant reductase was characterized and compared to other reductases by heterologous expression in insect cells and was shown to support reconstituted taxoid 10beta-hydroxylase activity with an efficiency comparable to that of other plant-derived reductases. Coexpression in yeast of the reductase along with T. cuspidata taxoid 10beta-hydroxylase, which catalyzes an early step of taxoid biosynthesis, demonstrated significant enhancement of hydroxylase activity compared to that supported by the endogenous yeast reductase alone. Functional transgenic coupling of the Taxus reductase with a homologous cytochrome P450 taxoid hydroxylase represents an important initial step in reconstructing Taxol biosynthesis in a microbial host.  相似文献   
77.
Peters RJ  Flory JE  Jetter R  Ravn MM  Lee HJ  Coates RM  Croteau RB 《Biochemistry》2000,39(50):15592-15602
The oleoresin secreted by grand fir (Abies grandis) is composed of resin acids derived largely from the abietane family of diterpene olefins as precursors which undergo subsequent oxidation of the C18-methyl group to a carboxyl function, for example, in the conversion of abieta-7,13-diene to abietic acid. A cDNA encoding abietadiene synthase has been isolated from grand fir and the heterologously expressed bifunctional enzyme shown to catalyze both the protonation-initiated cyclization of geranylgeranyl diphosphate to the intermediate (+)-copalyl diphosphate and the ionization-dependent cyclization of (+)-copalyl diphosphate, via a pimarenyl intermediate, to the olefin end products. Abietadiene synthase is translated as a preprotein bearing an N-terminal plastidial targeting sequence, and this form of the recombinant protein expressed in Escherichia coli proved to be unsuitable for detailed structure-function studies. Since the transit peptide-mature protein cleavage site could not be determined directly, a truncation series was constructed to delete the targeting sequence and prepare a "pseudomature" form of the enzyme that resembled the native abietadiene synthase in kinetic properties. Both the native synthase and the pseudomature synthase having 84 residues deleted from the preprotein converted geranylgeranyl diphosphate and the intermediate (+)-copalyl diphosphate to a nearly equal mixture of abietadiene, levopimaradiene, and neoabietadiene, as well as to three minor products, indicating that this single enzyme accounts for production of all of the resin acid precursors of grand fir. Kinetic evaluation of abietadiene synthase with geranylgeranyl diphosphate and (+)-copalyl diphosphate provided evidence for two functionally distinct active sites, the first for the cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate and the second for the cyclization of (+)-copalyl diphosphate to diterpene end products, and demonstrated that the rate-limiting step of the coupled reaction sequence resides in the second cyclization process. The structural implications of these findings are discussed in the context of primary sequence elements considered to be responsible for binding the substrate and intermediate and for initiating the respective cyclization steps.  相似文献   
78.
Regulation of monoterpene accumulation in leaves of peppermint   总被引:18,自引:0,他引:18       下载免费PDF全文
Plants synthesize numerous classes of natural products that accumulate during development and are thought to function as constitutive defenses against herbivores and pathogens. However, little information is available about how the levels of such defenses are regulated. We measured the accumulation of monoterpenes, a model group of constitutive defenses, in peppermint (Mentha x piperita L.) leaves and investigated several physiological processes that could regulate their accumulation: the rate of biosynthesis, the rate of metabolic loss, and the rate of volatilization. Monoterpene accumulation was found to be restricted to leaves of 12 to 20 d of age, the period of maximal leaf expansion. The rate of monoterpene biosynthesis determined by (14)CO(2) incorporation was closely correlated with monoterpene accumulation, as determined by gas chromatographic analysis, and appeared to be the principal factor controlling the monoterpene level of peppermint leaves. No significant catabolic losses of monoterpenes were detected throughout leaf development, and monoterpene volatilization was found to occur at a very low rate, which, on a monthly basis, represented less than 1% of the total pool of stored monoterpenes. The composition of volatilized monoterpenes differed significantly from that of the total plant monoterpene pool, suggesting that these volatilized products may arise from a separate secretory system. With the demonstration that the rate of biosynthesis is the chief process that determines monoterpene accumulation in peppermint, efforts to improve production in this species can now focus on the genes, enzymes, and cell differentiation processes that regulate monoterpene biosynthesis.  相似文献   
79.
DNA damage recognition represents a long-standing problem in the field of protein-DNA interactions. This article reviews our current knowledge of how damage recognition is achieved in bacterial nucleotide excision repair through the concerted action of the UvrA, UvrB, and UvrC proteins.  相似文献   
80.
The taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase which catalyzes the third step of Taxol biosynthesis has been isolated from methyl jasmonate-induced Taxus cells, and partially purified and characterized (K. Walker, R. E. B. Ketchum, M. Hezari, D. Gatfield, M. Golenowski, A. Barthol, and R. Croteau, Arch. Biochem. Biophys. 364, 273-279 1999). A revised purification method allowed internal amino acid microsequencing of the enzyme, from which primers were designed and employed to amplify a transacetylase gene-specific fragment. This radiolabeled, 900-bp amplicon was used as a hybridization probe to screen a cDNA library constructed from poly(A)(+) RNA isolated from induced Taxus cells, from which a full-length transacetylase sequence was obtained. Expression of this clone from pCWori(+) in Escherichia coli JM109 cells yielded the functional enzyme, as determined by radiochemical assay and combined capillary gas chromatographic-mass spectrometric verification of the acetylated product. The full-length DNA has an open-reading frame of 1317 nucleotides corresponding to a deduced amino acid sequence of 439 residues that exhibits high sequence identity to the proteolytic fragments of the native enzyme, which the recombinant transacetylase resembles in properties. Consistent with the size of the operationally soluble native enzyme, the DNA appears to encode a monomeric protein of molecular weight 49,079 that bears no N-terminal organellar targeting information. Sequence comparison of the taxadien-5alpha-ol-O-acetyl transferase with the few other known acyl transferases of plant origin indicates a significant degree of similarity between these enzymes (64-67%). The efficient conversion of taxadien-5alpha-yl acetate to further hydroxylated intermediates of the Taxol pathway confirms the significance of this acylation step and suggests this taxadienol transacetylase to be an important target for genetic manipulation to improve Taxol production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号