首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   37篇
  2023年   2篇
  2021年   5篇
  2018年   1篇
  2017年   3篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   16篇
  2011年   5篇
  2010年   8篇
  2009年   3篇
  2008年   10篇
  2007年   7篇
  2006年   7篇
  2005年   9篇
  2004年   12篇
  2003年   11篇
  2002年   10篇
  2001年   11篇
  2000年   7篇
  1999年   12篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   5篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1961年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
11.
The phenolic (5' position) and tyrosyl (5 position) ring deiodinases which catalyze the peripheral metabolism of thyroid hormones have proven difficult to purify and characterize biochemically. The present studies used Xenopus laevis oocytes as an in vivo translational assay system for detecting and quantitating mRNA for these enzymes. The injection of poly(A)+ RNA prepared from a human term placenta induced 5-deiodinase activity in oocytes. The expressed activity increased for up to 96 h after injection, was proportional to the amount of RNA injected, and manifested a Michaelis-Menten constant (Km) for T3 of 1.6 nM. In oocytes injected with poly(A)+ RNA prepared from rat liver, anterior pituitary gland, or brown adipose tissue, 5-deiodinase activity could not be demonstrated. The injection of poly(A)+ RNA from 15-day-old chick embryonic liver induced both 5'- and 5-deiodinase activity, with the 5'-deiodinase activity being sensitive to inhibition by 6-n-propyl-2-thiouracil. X. laevis oocytes can thus be induced to express either phenolic or tyrosyl ring deiodinase activity, or both, by the microinjection of poly(A)+ RNA prepared from selected tissues. These findings demonstrate that the types of deiodinase activity present in different organs represent tissue specific patterns of mRNA expression and strongly suggest that the enzymes responsible for types I and III deiodinase activity are encoded by different mRNAs.  相似文献   
12.
(+)-Pinene cyclase from sage (Salvia officinalis) catalyzes the isomerization and cyclization of geranyl pyrophosphate to (+)-alpha-pinene and (+)-camphene, and to lesser amounts of (+)-limonene, myrcene, and terpinolene, whereas (-)-pinene cyclase from this tissue catalyzes the conversion of the acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene, and (-)-camphene, and to lesser quantities of (-)-limonene, myrcene, and terpinolene. The bicyclic products of these enzymes (pinene and camphene) are derived via the cyclization of the cisoid, anti-endo-conformers of the bound, tertiary allylic intermediates (3R)-linalyl pyrophosphate [+)-pinene cyclase) and (3S)-linalyl pyrophosphate [-)-pinene cyclase). When challenged with either enantiomer of linalyl pyrophosphate or with neryl pyrophosphate (cis-isomer of geranyl pyrophosphate) as substrate, both pinene cyclases synthesize disproportionately high levels of acyclic olefins (myrcene and ocimene) and monocyclic olefins (limonene and terpinolene), compared with the product mixtures generated from the natural geranyl precursor. Resolution of the limonene derived from linalyl pyrophosphate and neryl pyrophosphate demonstrated that this monocyclic olefin was formed via conformational foldings in addition to the cisoid,anti-endo-pattern. These results indicate that the alternate substrates are ionized by the cyclases prior to their achieving the optimum orientation for bicyclization. In the case of geranyl pyrophosphate, a preassociation mechanism is suggested in which optimum folding of the terpenyl chain precedes the initial ionization step.  相似文献   
13.
The natural products that accumulate in or exude from plant glandular trichomes are biosynthesized by secretory cells located at the apex of the trichome. To investigate the formation of glandular trichome constituents in several species of mints (Lamiaceae), a new procedure was developed for isolating large numbers of highly purified secretory cells. In this method, the leaf surface is gently abraded with glass beads in a way that fragments the glandular trichomes and yields clusters of intact secretory cells. The isolated, intact secretory cells and cell-free preparations derived from them are very active in monoterpene biosynthesis and provide useful starting materials for the purification of several key enzymes of monoterpene metabolism. The procedure described is adaptable to a broad range of plant species and should find wide application in the preparation of whole cell and cell-free systems for biosynthetic studies of plant natural products found in glandular trichomes.  相似文献   
14.
The biosynthetic pathway to n-heptane was investigated by examining the effect of the [beta]-keto acyl-acyl carrier protein synthase inhibitor (2R,3S)-2,3-epoxy-4-oxo-7E,10E-dodecadienamide (cerulenin), a thiol reagent ([beta]-mercaptoethanol), and an aldehydetrapping reagent (hydroxylamine) on the biosynthesis of n-[14C]heptane and putative intermediates in xylem sections of Jeffrey pine (Pinus jeffreyi Grev.& Balf.) incubated with [14C]acetate. Cerulenin inhibited C18 fatty acid biosynthesis but had relatively little effect on radiolabel incorporation into C8 fatty acyl groups and n-heptane. [beta]-Mercaptoethanol inhibited n-heptane biosynthesis, with a corresponding accumulation of radiolabel into both octanal and 1-octanol, whereas hydroxylamine inhibited both n-heptane and 1-octanol biosynthesis, with radiolabel accumulation in octyl oximes. [14C]Octanal was converted to both n-heptane and 1-octanol when incubated with xylem sections, whereas [14C]1-octanol was converted to octanal and n-heptane in a hydroxylamine-sensitive reaction. These results suggest a pathway for the biosynthesis of n-heptane whereby acetate is polymerized via a typical fatty acid synthase reaction sequence to yield a C8 thioester, which subsequently undergoes a two-electron reduction to generate a free thiol and octanal, the latter of which alternately undergoes an additional, reversible reduction to form 1-octanol or loss of C1 to generate n-heptane.  相似文献   
15.
Terpenoid metabolism.   总被引:25,自引:0,他引:25       下载免费PDF全文
  相似文献   
16.
The stem content of diterpene resin acids (rosin) increases dramatically following wounding of grand fir (Abies grandis) saplings, but the level of monoterpene olefins (turpentine) in the stem decreases following injury, in spite of a significant increase in monoterpene cyclase (synthase) activity. However, this observation was explained when rapid evaporative losses of the volatile monoterpenes from the wound site was demonstrated by trapping experiments, a finding consistent with a role of turpentine as a solvent for the mobilization and deposition of rosin to seal the injury. Mature forest trees responded to stem wounding by the enhancement of monoterpene cyclization capacity in a manner similar to 2-year-old grand fir saplings raised in the greenhouse. Light and water stresses greatly reduced the constitutive level of monoterpene cyclase activity and abolished the wound-induced response. The diminution in monoterpene biosynthetic capacity was correlated with a dramatic decrease in cyclase protein as demonstrated by immunoblotting. Relief of stress conditions resulted in the restoration of cyclase activity (both constitutive and wound induced) to control levels. The results of these experiments indicate that grand fir saplings are a suitable model for studies of the regulation of defensive oleoresinosis in conifers.  相似文献   
17.
18.
Hydrophobic interaction of the aglycone of monoterpenyl glycosides with the polyacrylamide matrix of Bio-Gel P-2 greatly retards the elution of these substances when chromatographed in dilute aqueous sodium chloride. This hydrophobic interaction is eliminated by inclusion of 15% acetonitrile in the eluant, thereby permitting conventional gel-permeation chromatography. Combination of these techniques by sequential chromatography on the same Bio-Gel column, in the hydrophobic interaction mode followed by the gel-permeation mode, provides a simple, yet mild and highly selective procedure for the purification of monoterpenyl glycosides from crude plant extracts. Examination of the chromatographic properties of beta-D-glucopyranosides and beta-D-galactopyranosides of a number of acyclic, monocyclic, and bicyclic monoterpenols indicates that the extent of hydrophobic interaction is of diagnostic value in determining the nature of the aglycone.  相似文献   
19.
(-)-Menthone, the major monoterpene component of the essential oil of maturing peppermint (Mentha piperita L.) leaves (6 micromoles per leaf) is rapidly metabolized at the onset of flowering with a concomitant rise in the level of (-)-menthol (to about 2 micromoles per leaf). Exogenous (-)-[G-(3)H]menthone is converted into (-)-[(3)H]menthol as the major steam-volatile product in leaf discs in flowering peppermint (10% of incorporated tracer); however, the major portion of the incorporated tracer (86%) resided in the nonvolatile metabolites of (-)-[G-(3)H]menthone. Acid hydrolysis of the nonvolatile material released over half of the radioactivity to the steamvolatile fraction, and the major component of this fraction was identified as (+)-neomenthol by radiochromatographic analysis and by synthesis of crystalline derivatives, thus suggesting the presence of a neomenthyl glycoside. Thin layer chromatography, ion exchange chromatography, and gel permeation chromatography on Bio-Gel P-2 allowed the purification of the putative neomenthyl glycoside, and these results suggested that the glycoside contained a single, neutral sugar residue. Hydrolysis of the purified glycoside, followed by reduction of the resulting sugar moiety with NaB(3)H(4), generated a single labeled product that was subsequently identified as glucitol by radio gas-liquid chromatography of both the hexatrimethylsilyl ether and hexaacetate derivative, and by crystallization to constant specific radioactivity of both the alditol and the corresponding hexabenzoate. These results, along with studies on the hydrolysis of the glycoside by specific glycosidases, strongly suggest that (+)-neomenthyl-beta-d-glucoside is a major metabolite of (-)-menthone in flowering peppermint. This is the first report on the occurrence of a neomenthyl glycoside, and the first evidence implicating glycosylation as an early step in monoterpene catabolism.  相似文献   
20.
Dye-ligand and immobilized metal ion interaction chromatography were shown to be efficient techniques for the rapid batchwise fractionation, from crude plant extracts, of a series of enzymes of prenyl pyrophosphate metabolism. Isopentenyl pyrophosphate isomerase, two prenyltransferases, and a number of terpene cyclases (synthases) were readily adsorbed to Matrex Gel Red A (a dimeric triazine dye coupled to cross-linked agarose beads), and desorbed in good yield with relatively high concentrations of KCl and increasing pH. Although all of these enzymes exhibit the common feature of employing a pyrophosphorylated substrate, selective elution could not be achieved with substrate or substrate analogues bearing a pyrophosphate function. Nor could the strong binding of these enzymes to triazine dyes be attributed solely to metal ion interactions or to hydrophobic effects. In a similar way, the isomerase, the prenyltransferases, and all of the terpene cyclases bound to a column of iminodiacetate-immobilized Ni(II) and were desorbed in relatively high fold purity with 15 mM imidazole. Although all of these enzymes bear accessible histidine residues, the interactions with the chelated metal ion were not sufficiently different to permit selective enzyme desorbtion by imidazole gradient elution. However, the use of columns charged with Zn(II) or Co(II) did allow some separation of the different cyclase and transferase types. While empirical in nature, these techniques offer simple, effective, and high-capacity methods for the preliminary concentration and purification of a group of enzymes that utilize prenyl pyrophosphate intermediates of isoprenoid biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号