首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2233篇
  免费   76篇
  国内免费   1篇
  2310篇
  2024年   16篇
  2023年   21篇
  2022年   26篇
  2021年   46篇
  2020年   34篇
  2019年   44篇
  2018年   57篇
  2017年   60篇
  2016年   71篇
  2015年   126篇
  2014年   135篇
  2013年   150篇
  2012年   185篇
  2011年   164篇
  2010年   104篇
  2009年   97篇
  2008年   126篇
  2007年   113篇
  2006年   127篇
  2005年   110篇
  2004年   87篇
  2003年   89篇
  2002年   85篇
  2001年   31篇
  2000年   16篇
  1999年   20篇
  1998年   18篇
  1997年   15篇
  1996年   10篇
  1995年   18篇
  1994年   9篇
  1993年   13篇
  1992年   10篇
  1991年   10篇
  1990年   14篇
  1989年   9篇
  1988年   14篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1982年   2篇
  1978年   1篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
  1966年   1篇
  1960年   1篇
排序方式: 共有2310条查询结果,搜索用时 15 毫秒
51.
    
Muscle glycogen depletion has been proposed as one of the main causes of fatigue during exercise. However, few studies have addressed the contribution of liver glycogen to exercise performance. Using a low-intensity running protocol, here, we analyzed exercise capacity in mice overexpressing protein targeting to glycogen (PTG) specifically in the liver (PTGOE mice), which show a high concentration of glycogen in this organ. PTGOE mice showed improved exercise capacity, as determined by the distance covered and time ran in an extenuating endurance exercise, compared with control mice. Moreover, fasting decreased exercise capacity in control mice but not in PTGOE mice. After exercise, liver glycogen stores were totally depleted in control mice, but PTGOE mice maintained significant glycogen levels even in fasting conditions. In addition, PTGOE mice displayed an increased hepatic energy state after exercise compared with control mice. Exercise caused a reduction in the blood glucose concentration in control mice that was less pronounced in PTGOE mice. No changes were found in the levels of blood lactate, plasma free fatty acids, or β-hydroxybutyrate. Plasma glucagon was elevated after exercise in control mice, but not in PTGOE mice. Exercise-induced changes in skeletal muscle were similar in both genotypes. These results identify hepatic glycogen as a key regulator of endurance capacity in mice, an effect that may be exerted through the maintenance of blood glucose levels.  相似文献   
52.
53.
The monitoring of gene expression is fundamental for understanding developmental biology. Here we report a successful experimental protocol for in situ hybridization in both whole-mount and sectioned planarian embryos. Conventional in situ hybridization techniques in developmental biology are used on whole-mount preparations. However, given that the inherent lack of external morphological markers in planarian embryos hinders the proper interpretation of gene expression data in whole-mount preparations, here we used sectioned material. We discuss the advantages of sectioned versus whole-mount preparations, namely, better probe penetration, improved tissue preservation, and the possibility to interpret gene expression in relation to internal morphological markers such as the epidermis, the embryonic and definitive pharynges, and the gastrodermis. Optimal fixatives and embedding methods for sectioning are also discussed. A. Cardona and J. Fernández have contributed equally to this work.  相似文献   
54.
Hypercoagulation often occurs in type 2 diabetes, suggesting pleiotropy of the genes that influence disease liability and hemostasis-related phenotypes. To better understand the relationship between hemostasis and diabetes, we first used maximum-likelihood methods to estimate the relative contribution of additive genetic, measured environmental, and shared household effects to the normal variance of 16 hemostasis-related traits in 813 individuals participating in the San Antonio Family Heart Study. We estimated moderate to high heritabilities (0.20-0.60) for each phenotype. Von Willebrand factor (VWF), thrombin activatable fibrinolysis inhibitor, activated protein C (APC) ratio, factor V, and prothrombin time had heritabilities greater than 0.50. The correlation between type 2 diabetes status and the hemostasis-related traits was then partitioned into genetic and environmental components using bivariate variance-components methods. Significant (p < or = 0.05) positive genetic correlations (0.37-0.51) occurred with factors II and VIII, VWF, total protein S (tPS), and tissue factor pathway inhibitor. Significant negative genetic correlations were estimated for activated partial thromboplastin time (-0.49) and APC ratio (-0.38). By contrast, significant environmental correlations occurred only with factor II (-0.40) and tPS (-0.31). Our results suggest that genes are important contributors to the normal variation in hemostasis-related traits and that genes influencing hemostasis-related traits pleiotropically influence diabetes risk.  相似文献   
55.
    
To know the mechanisms involved in the activation of promutagenic aromatic amines mediated by plants, we used Persea americana S117 system (S117) for the activation of 2-aminofluorene (2-AF) and m-phenylenediamine (m-PDA) in Ames assays. In these assays, the effect of the diphenylene iodonium (DPI), an inhibitor of flavin-containing monooxygenases (FMOs), of the 1-aminobenzotriazole (1-ABT), an inhibitor of cytochromes P450 (cyt-P450s) and of the methimazole, a high-affinity substrate for FMOs, was studied. The efficacy of both inhibitors and of the methimazole was verified to find that they did partially inhibit the mutagenesis of both aromatic amines, activated with rat liver S9. Similarly, both inhibitors and methimazole did produce a significant decrease in 2-AF and m-PDA mutagenesis, when the activation system was S117, indicating that, similar to what occurs in mammalian systems, plant FMOs and cyt-P450s can metabolize aromatic amines to mutagenic product(s). However, the affinity of both FMOs and cyt-P450s of plant for 2-AF and m-PDA was different. Data obtained indicate that the activities of plant FMOs must be the main enzymatic system of m-PDA activation while, in 2-AF activation, plant cyt-P450s have the most relevant activities. In addition, peroxidases of the S117 system must contribute to 2-AF activation and some isoforms of FMOs and/or cyt-P450s of the S117 system, uninhibited by the inhibitors used, must be the responsible for a partial activation of m-PDA.  相似文献   
56.
57.
Tyrosinase is a key enzyme in the synthesis of melanin in skin and hair and has also been proposed to contribute to the formation of neuromelanin (NM). The presence of NM, which is biochemically similar to melanin in peripheral tissues, identifies groups of neurons susceptible in Parkinson's disease (PD). Whether tyrosinase is beneficial or detrimental to neurons is unclear; whilst the enzyme activity of tyrosinase generates dopamine-quinones and other oxidizing compounds, NM may form a sink for such radical species. In the present study, we demonstrated that tyrosinase is expressed at low levels in the human brain. We found that mRNA, protein and enzyme activity are all present but at barely detectable levels. In cell culture systems, expression of tyrosinase increases neuronal susceptibility to oxidizing conditions, including dopamine itself. We related these in vitro observations to the human disease by assessing whether there was any genetic association between the gene encoding tyrosinase and idiopathic PD. We found neither genotypic or haplotypic association with three polymorphic markers of the gene. This argues against a strong genetic association between tyrosinase and PD, although the observed contribution to cellular toxicity suggests that a biochemical association is likely.  相似文献   
58.

Background

Algorithms for bone mineral density (BMD) management in HIV-infected patients are lacking. Our objective was to assess how often a dual-energy x-ray absorptiometry (DXA) scan should be performed by assessing time of progression to osteopenia/osteoporosis.

Methods

All DXA scans performed between 2000 and 2009 from HIV-infected patients with at least two DXA were included. Time to an event (osteopenia and osteoporosis) was assessed using the Kaplan–Meier method. Strata (tertiles) were defined using baseline minimum T scores. Differences between strata in time to an event were compared with the log-rank test.

Results

Of 391 patients (1,639 DXAs), 49.6% had osteopenia and 21.7% osteoporosis at their first DXA scan. Of the 112 (28.6%) with normal BMD, 35.7% progressed to osteopenia; median progression time was 6.7 years. These patients were stratified: “low-risk" (baseline minimum T score >−0.2 SD), “middle-risk" (between −0.2 and −0.6 SD), and “high-risk" (from −0.6 to −1 SD); median progression time to osteopenia was 8.7, >7.2, and 1.7 years, respectively (p<0.0001). Of patients with osteopenia, 23.7% progressed to osteoporosis; median progression time was >8.5 years. Progression time was >8.2 years in “low-risk" tertile (T score between −1.1 and −1.6 SD), >8.5 years in “middle-risk" (between −1.6 and −2), and 3.2 years in “high-risk" (from −2 to −2.4) (p<0.0001).

Conclusions

Our results may help to define the BMD testing interval. The lowest T score tertiles would suggest recommending a subsequent DXA in 1–2 years; in the highest tertiles, ≥6 years. Early intervention in patients with bone demineralization could reduce fracture–related morbidity/mortality.  相似文献   
59.
    
FANCD2 is an evolutionarily conserved Fanconi anemia (FA) gene that plays a key role in DNA double-strand-type damage responses. Using complementation assays and immunoblotting, a consortium of American and European groups assigned 29 patients with FA from 23 families and 4 additional unrelated patients to complementation group FA-D2. This amounts to 3%-6% of FA-affected patients registered in various data sets. Malformations are frequent in FA-D2 patients, and hematological manifestations appear earlier and progress more rapidly when compared with all other patients combined (FA-non-D2) in the International Fanconi Anemia Registry. FANCD2 is flanked by two pseudogenes. Mutation analysis revealed the expected total of 66 mutated alleles, 34 of which result in aberrant splicing patterns. Many mutations are recurrent and have ethnic associations and shared allelic haplotypes. There were no biallelic null mutations; residual FANCD2 protein of both isotypes was observed in all available patient cell lines. These analyses suggest that, unlike the knockout mouse model, total absence of FANCD2 does not exist in FA-D2 patients, because of constraints on viable combinations of FANCD2 mutations. Although hypomorphic mutations arie involved, clinically, these patients have a relatively severe form of FA.  相似文献   
60.
Structural conversion of the presynaptic, intrinsically disordered protein α-synuclein into amyloid fibrils underlies neurotoxicity in Parkinson’s disease. The detailed mechanism by which this conversion occurs is largely unknown. Here, we identify a discrete pattern of transient tertiary interactions in monomeric α-synuclein involving amino acid residues that are, in the fibrillar state, part of β-strands. Importantly, this pattern of pairwise interactions does not correspond to that found in the amyloid state. A redistribution of this network of fibril-like contacts must precede aggregation into the amyloid structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号