首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2092篇
  免费   174篇
  国内免费   1篇
  2024年   4篇
  2023年   21篇
  2022年   16篇
  2021年   45篇
  2020年   32篇
  2019年   43篇
  2018年   56篇
  2017年   60篇
  2016年   71篇
  2015年   127篇
  2014年   132篇
  2013年   148篇
  2012年   184篇
  2011年   163篇
  2010年   104篇
  2009年   98篇
  2008年   125篇
  2007年   111篇
  2006年   127篇
  2005年   109篇
  2004年   87篇
  2003年   87篇
  2002年   85篇
  2001年   31篇
  2000年   16篇
  1999年   19篇
  1998年   17篇
  1997年   15篇
  1996年   10篇
  1995年   18篇
  1994年   9篇
  1993年   13篇
  1992年   10篇
  1991年   10篇
  1990年   15篇
  1989年   9篇
  1988年   14篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1960年   1篇
排序方式: 共有2267条查询结果,搜索用时 15 毫秒
111.
The biological activity and metabolism of applied GA1 and GA4 were studied in leaves of alstroemeria (Alstroemeria hybrida). It appeared that GA4 was 2 orders of magnitude more active in delaying leaf senescence than GA1. GA3-13-OMe, a GA analog that cannot be hydroxylated on the 13-C position, also retarded chlorophyll loss, although less efficiently. Tritiated and deuterated GA1, GA4, and GA9 were applied to leaves, and their metabolites were analyzed. According to high performance liquid chromatography and gas chromatography-mass spectrometry analyses, GA9 was converted into GA4 and GA34, and GA4 was converted into GA34 and more polar components. No evidence was found for the conversion of both GA9 and GA4 into GA1, even at the relatively high concentrations that were taken up by the leaf. The results strongly suggest that GA4 is recognized directly by a receptor involved in regulation of leaf senescence in alstroemeria. Received November 24, 1997; accepted February 17, 1998  相似文献   
112.
Regulated activation of receptor tyrosine kinases depends both on the presence of the receptors at the cell surface and on the availability of their ligands. In Drosophila the torso (tor) tyrosine kinase receptor is distributed along the surface of the embryo but it is only activated at the poles by a diffusible extracellular ligand generated at each pole which is trapped by the receptor, thereby impeding further diffusion. However, it is not well understood how this signal is generated, although it is known to depend on the activity of many genes such as torso-like (tsl) and trunk (trk). To further investigate the mechanism involved in the local activation of the tor receptor we have altered the normal expression of the tsl protein by generating females in which the tsl gene is expressed in the oocyte under the control of the tor promoter rather than in the ovarian follicle cells. Analysis of the phenotypes generated by this hybrid gene and its interactions with mutations in other genes in the pathway has enabled us to further dissect the mechanism of tor receptor activation and to define more precisely the role of the different genes acting in this process.  相似文献   
113.
Glial cells of abdominal ganglia of crayfish have been studied by transmission electron microscopy. Four cell types can be defined: (1) perivascular glial cells, close to the vascular spaces; (2) perineuronal glial cells, the processes of which ensheathe neuron perikarya; (3) adaxonal glial cells ensheathing axons; (4) neuropilar glial cells, associated with synapsing terminals in the neuropile. Neuropilar glia, adaxonal glia and the system formed by perineuronal and perivascular glia separate different functional zones of the neurons from the hemolymph or the electron dense extracellular matrix. These glial arrangements could play a similar role in hemato-neuronal transport. Gap-like junctions between glia and neuron cell bodies are frequent and could be involved in direct triggering of glial activities related to neurons.  相似文献   
114.
115.
The principles by which cortical microtubules self-organize into a global template hold important implications for cell wall patterning. Microtubules move along bundles of microtubules, and neighboring bundles tend to form mobile domains that flow in a common direction. The bundles themselves move slowly and for longer than the individual microtubules, with domains describing slow rotary patterns. Despite this tendency for colinearity, microtubules have been seen to branch off extant microtubules at ∼45°. To examine this paradoxical behavior, we investigated whether some microtubules may be born on and grow along extant microtubule(s). The plus-end markers Arabidopsis thaliana end binding protein 1a, AtEB1a-GFP, and Arabidopsis SPIRAL1, SPR1-GFP, allowed microtubules of known polarity to be distinguished from underlying microtubules. This showed that the majority of microtubules do branch but in a direction heavily biased toward the plus end of the mother microtubule: few grow backward, consistent with the common polarity of domains. However, we also found that a significant proportion of emergent comets do follow the axes of extant microtubules, both at sites of apparent microtubule nucleation and at cross-over points. These phenomena help explain the persistence of bundles and counterbalance the tendency to branch.  相似文献   
116.
The energy density of current batteries is limited by the practical capacity of the positive electrode, which is determined by the properties of the active material and its concentration in the composite electrode architecture. The observation in dynamic conditions of electrochemical transformations creates the opportunity of identifying design rules toward reaching the theoretical limits of battery electrodes. But these observations must occur during operation and at multiple scales. They are particularly critical at the single‐particle level, where incomplete reactions and failure are prone to occur. Here, operando full‐field transmission X‐ray microscopy is coupled with X‐ray spectroscopy to follow the chemical and microstructural evolution at the nanoscale of single crystals of Li1+xMn2–xO4, a technologically relevant Li‐ion battery electrode material. The onset and crystallographic directionality of a series of complex phase transitions are followed and correlated with particle fracture. The dynamic character of this study reveals the existence of nonequilibrium pathways where phases at substantially different potentials can coexist at short length scales. The results can be used to inform the engineering of particle morphologies and electrode architectures that bypass the issues observed here and lead to optimized battery electrode properties.  相似文献   
117.
The medial temporal lobe (MTL)—comprising hippocampus and the surrounding neocortical regions—is a targeted brain area sensitive to several neurological diseases. Although functional magnetic resonance imaging (fMRI) has been widely used to assess brain functional abnormalities, detecting MTL activation has been technically challenging. The aim of our study was to provide an fMRI paradigm that reliably activates MTL regions at the individual level, thus providing a useful tool for future research in clinical memory-related studies. Twenty young healthy adults underwent an event-related fMRI study consisting of three encoding conditions: word-pairs, face-name associations and complex visual scenes. A region-of-interest analysis at the individual level comparing novel and repeated stimuli independently for each task was performed. The results of this analysis yielded activations in the hippocampal and parahippocampal regions in most of the participants. Specifically, 95% and 100% of participants showed significant activations in the left hippocampus during the face-name encoding and in the right parahippocampus, respectively, during scene encoding. Additionally, a whole brain analysis, also comparing novel versus repeated stimuli at the group level, showed mainly left frontal activation during the word task. In this group analysis, the face-name association engaged the HP and fusiform gyri bilaterally, along with the left inferior frontal gyrus, and the complex visual scenes activated mainly the parahippocampus and hippocampus bilaterally. In sum, our task design represents a rapid and reliable manner to study and explore MTL activity at the individual level, thus providing a useful tool for future research in clinical memory-related fMRI studies.  相似文献   
118.
119.
The organization of cells, emerging from cell–cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called “van Gogh bundles”) of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.  相似文献   
120.
Neurons in the brain are known to operate under a careful balance of excitation and inhibition, which maintains neural microcircuits within the proper operational range. How this balance is played out at the mesoscopic level of neuronal populations is, however, less clear. In order to address this issue, here we use a coupled neural mass model to study computationally the dynamics of a network of cortical macrocolumns operating in a partially synchronized, irregular regime. The topology of the network is heterogeneous, with a few of the nodes acting as connector hubs while the rest are relatively poorly connected. Our results show that in this type of mesoscopic network excitation and inhibition spontaneously segregate, with some columns acting mainly in an excitatory manner while some others have predominantly an inhibitory effect on their neighbors. We characterize the conditions under which this segregation arises, and relate the character of the different columns with their topological role within the network. In particular, we show that the connector hubs are preferentially inhibitory, the more so the larger the node''s connectivity. These results suggest a potential mesoscale organization of the excitation-inhibition balance in brain networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号