首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2100篇
  免费   171篇
  国内免费   1篇
  2272篇
  2024年   4篇
  2023年   21篇
  2022年   24篇
  2021年   45篇
  2020年   32篇
  2019年   43篇
  2018年   56篇
  2017年   60篇
  2016年   71篇
  2015年   126篇
  2014年   132篇
  2013年   148篇
  2012年   184篇
  2011年   163篇
  2010年   104篇
  2009年   97篇
  2008年   125篇
  2007年   111篇
  2006年   127篇
  2005年   109篇
  2004年   87篇
  2003年   87篇
  2002年   85篇
  2001年   31篇
  2000年   16篇
  1999年   19篇
  1998年   17篇
  1997年   15篇
  1996年   10篇
  1995年   18篇
  1994年   9篇
  1993年   13篇
  1992年   10篇
  1991年   10篇
  1990年   14篇
  1989年   9篇
  1988年   14篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1960年   1篇
排序方式: 共有2272条查询结果,搜索用时 15 毫秒
81.
Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.  相似文献   
82.
Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data.  相似文献   
83.
Chan J  Calder G  Fox S  Lloyd C 《The Plant cell》2005,17(6):1737-1748
In a previous study on Arabidopsis thaliana suspension cells transiently infected with the microtubule end binding protein AtEB1a-green fluorescent protein (GFP), we reported that interphase microtubules grow from multiple sites dispersed over the cortex, with plus ends forming the characteristic comet-like pattern. In this study, AtEB1a-GFP was used to study the transitions of microtubule arrays throughout the division cycle of cells lacking a defined centrosome. During division, the dispersed origin of microtubules was replaced by a more focused pattern with the plus end comets growing away from sites associated with the nuclear periphery. The mitotic spindle then evolved in two quite distinct ways depending on the presence or absence of the preprophase band (PPB): the cells displaying outside-in as well as inside-out mitotic pathways. In those cells possessing a PPB, the fusion protein labeled material at the nuclear periphery that segregated into two polar caps, perpendicular to the PPB, before nuclear envelope breakdown (NEBD). These polar caps then marked the spindle poles upon NEBD. However, in the population of cells without PPBs, there was no prepolarization of material at the nuclear envelope before NEBD, and the bipolar spindle only emerged clearly after NEBD. Such cells had variable spindle orientations and enhanced phragmoplast mobility, suggesting that the PPB is involved in a polarization event that promotes early spindle pole morphogenesis and subsequent positional stability during division. Astral-like microtubules are not usually prominent in plant cells, but they are clearly seen in these Arabidopsis cells, and we hypothesize that they may be involved in orienting the division plane, particularly where the plane is not determined before division.  相似文献   
84.
MOTIVATION: Given that association and dissociation of protein molecules is crucial in most biological processes several in silico methods have been recently developed to predict protein-protein interactions. Structural evidence has shown that usually interacting pairs of close homologs (interologs) physically interact in the same way. Moreover, conservation of an interaction depends on the conservation of the interface between interacting partners. In this article we make use of both, structural similarities among domains of known interacting proteins found in the Database of Interacting Proteins (DIP) and conservation of pairs of sequence patches involved in protein-protein interfaces to predict putative protein interaction pairs. RESULTS: We have obtained a large amount of putative protein-protein interaction (approximately 130,000). The list is independent from other techniques both experimental and theoretical. We separated the list of predictions into three sets according to their relationship with known interacting proteins found in DIP. For each set, only a small fraction of the predicted protein pairs could be independently validated by cross checking with the Human Protein Reference Database (HPRD). The fraction of validated protein pairs was always larger than that expected by using random protein pairs. Furthermore, a correlation map of interacting protein pairs was calculated with respect to molecular function, as defined in the Gene Ontology database. It shows good consistency of the predicted interactions with data in the HPRD database. The intersection between the lists of interactions of other methods and ours produces a network of potentially high-confidence interactions.  相似文献   
85.
Through an HPLC-Q-TOF-MS-driven nontargeted metabolomics approach, we aimed to discriminate changes in the urinary metabolome of subjects with metabolic syndrome (MetS), following 12 weeks of mixed nuts consumption (30 g/day), compared to sex- and age-matched individuals given a control diet. The urinary metabolome corresponding to the nut-enriched diet clearly clustered in a distinct group, and the multivariate data analysis discriminated relevant mass features in this separation. Metabolites corresponding to the discriminating ions (MS features) were then subjected to multiple tandem mass spectrometry experiments using LC-ITD-FT-MS, to confirm their putative identification. The metabolomics approach revealed 20 potential markers of nut intake, including fatty acid conjugated metabolites, phase II and microbial-derived phenolic metabolites, and serotonin metabolites. An increased excretion of serotonin metabolites was associated for the first time with nut consumption. Additionally, the detection of urinary markers of gut microbial and phase II metabolism of nut polyphenols confirmed the understanding of their bioavailability and bioactivity as a priority area of research in the determination of the health effects derived from nut consumption. The results confirmed how a nontargeted metabolomics strategy may help to access unexplored metabolic pathways impacted by diet, thereby raising prospects for new intervention targets.  相似文献   
86.
Protein kinase CK2 is a pleiotropic Ser/Thr kinase, evolutionary conserved in eukaryotes. Studies performed in different organisms, from yeast to humans, have highlighted the importance of CK2 in cell growth and cell-cycle control. However, the signalling pathways in which CK2 is involved have not been fully identified. In plants, the phytohormone auxin is a major regulator of cell growth. Recent discoveries have demonstrated that differential distribution of within auxin plant tissues is essential for developmental processes, and that this distribution is dependent on polar auxin transport. We report here that a dominant-negative mutant of CK2 (CK2mut) in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. However, CK2mut plants exhibit normal responses to exogenous indole-3-acetic acid (IAA) indicating that they are not affected in the perception of the hormone but upstream in the pathway. We demonstrate that mutant plants are not deficient in IAA but are impaired in its transport. Using genetic and pharmacological tools we show that CK2 activity depletion hinders correct formation of auxin gradients and leads to widespread changes in the expression of auxin-related genes. In particular, members of the auxin efflux carrier family (PINs), and the protein kinase PINOID, both key regulators of auxin fluxes, were misexpressed. PIN4 and PIN7 were also found mislocalized, with accumulation in endosomal bodies. We propose that CK2 functions in the regulation of auxin-signalling pathways, particularly in auxin transport.  相似文献   
87.

Background

The methylerythritol phosphate pathway for isoprenoid biosynthesis is an attractive target for the design of new specific antibiotics for the treatment of gastrointestinal diseases associated with the presence of the bacterium Helicobacter pylori since this pathway which is essential to the bacterium is absent in humans.

Results

This work reports the molecular cloning of one of the genes of the methylerythritol phosphate pathway form H. pylori (ispDF; HP_1440) its expression in Escherichia coli and the functional characterization of the recombinant enzyme. As shown by genetic complementation and in vitro functional assays the product of the ispDF gene form H. pylori is a bifunctional enzyme which can replace both CDP-methylerythritol synthase and methylerythritol cyclodiphosphate synthase from E. coli.

General significance

Designing inhibitors that affect at the same time both enzyme activities of the H. pylori bifunctional enzyme (i.e. by disrupting protein oligomerization) would result in more effective antibiotics which would be able to continue their action even if the bacterium acquired a resistance to another antibiotic directed against one of the individual activities.

Conclusion

The bifunctional enzyme would be an excellent target for the design of new, selective antibiotics for the treatment of H. pylori associated diseases.  相似文献   
88.
The effect of simulated ischemia [hypoxia, no glucose, extracellular pH (pH(o)) 6.4] on cGMP synthesis induced by stimulation of soluble (sGC) or particulate guanylyl cyclase (pGC) was investigated in adult rat cardiomyocytes. Intracellular cGMP content was measured after stimulation of sGC by S-nitroso-N-penicillamine (SNAP) or stimulation of pGC by natriuretic peptides [urodilatin (Uro), atrial natriuretic peptide (ANP), or C-type natriuretic peptide (CNP)] for 1 min in the presence of phosphodiesterase inhibitors. After 2 h of simulated ischemia, a decrease of >50% was observed in pGC-dependent cGMP synthesis, but no significant change was observed in sGC-dependent cGMP synthesis. The reduction in cGMP synthesis caused by simulated ischemia was mimicked by extracellular acidosis (pH(o) 6.4), which decreased pGC-mediated cGMP synthesis without altering sGC-mediated cGMP synthesis. An extreme sensitivity of pGC activity to low pH was also observed in membrane cell fractions. Hypoxia without acidosis (pH(o) 7.4) profoundly depressed cellular ATP content but did not change the response to SNAP, Uro, or ANP (selective agonists of pGC type A receptor). Only cGMP synthesis in response to CNP (a selective agonist of pGC type B receptor) was significantly reduced by ATP depletion. These data support the relevance of intracellular pH as a modulator of cGMP and suggest that, in ischemic cardiomyocytes, synthesis of cGMP would be mainly nitric oxide dependent.  相似文献   
89.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
90.
Delta-conotoxin EVIA, from Conus ermineus, is a 32-residue polypeptide cross-linked by three disulfide bonds forming a four-loop framework. delta-Conotoxin EVIA is the first conotoxin known to inhibit sodium channel inactivation in neuronal membranes from amphibians and mammals (subtypes rNa(v)1.2a, rNa(v)1.3, and rNa(v)1.6), without affecting rat skeletal muscle (subtype rNa(v)1.4) and human cardiac muscle (subtype hNa(v)1.5) sodium channel (Barbier, J., Lamthanh, H., Le Gall, F., Favreau, P., Benoit, E., Chen, H., Gilles, N., Ilan, N., Heinemann, S. F., Gordon, D., Ménez, A., and Molgó, J. (2004) J. Biol. Chem. 279, 4680-4685). Its structure was solved by NMR and is characterized by a 1:1 cis/trans isomerism of the Leu(12)-Pro(13) peptide bond in slow exchange on the NMR time scale. The structure of both cis and trans isomers could be calculated separately. The isomerism occurs within a specific long disordered loop 2, including residues 11-19. These contribute to an important hydrophobic patch on the surface of the toxin. The rest of the structure matches the "inhibitor cystine-knot motif" of conotoxins from the "O superfamily" with a high structural order. To probe a possible functional role of the Leu(12)-Pro(13) cis/trans isomerism, a Pro(13) --> Ala delta-conotoxin EVIA was synthesized and shown to exist only as a trans isomer. P13A delta-conotoxin EVIA was estimated only two times less active than the wild-type EVIA in binding competition to rat brain synaptosomes and when injected intracerebroventricularly into mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号