首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2103篇
  免费   172篇
  国内免费   1篇
  2276篇
  2024年   4篇
  2023年   21篇
  2022年   24篇
  2021年   45篇
  2020年   32篇
  2019年   43篇
  2018年   56篇
  2017年   60篇
  2016年   71篇
  2015年   126篇
  2014年   132篇
  2013年   148篇
  2012年   184篇
  2011年   163篇
  2010年   104篇
  2009年   97篇
  2008年   125篇
  2007年   111篇
  2006年   127篇
  2005年   109篇
  2004年   87篇
  2003年   87篇
  2002年   85篇
  2001年   31篇
  2000年   17篇
  1999年   20篇
  1998年   17篇
  1997年   15篇
  1996年   10篇
  1995年   18篇
  1994年   9篇
  1993年   13篇
  1992年   10篇
  1991年   10篇
  1990年   14篇
  1989年   10篇
  1988年   15篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1960年   1篇
排序方式: 共有2276条查询结果,搜索用时 0 毫秒
71.
Girard E  Bernard V  Minic J  Chatonnet A  Krejci E  Molgó J 《Life sciences》2007,80(24-25):2380-2385
At the neuromuscular junction (NMJ) acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can hydrolyze acetylcholine (ACh). Released ACh quanta are known to diffuse rapidly across the narrow synaptic cleft and pairs of ACh molecules cooperate to open endplate channels. During their diffusion through the cleft, or after being released from muscle nicotinic ACh receptors (nAChRs), most ACh molecules are hydrolyzed by AChE highly concentrated at the NMJ. Advances in mouse genomics offered new approaches to assess the role of specific cholinesterases involved in synaptic transmission. AChE knockout mice (AChE-KO) provide a valuable tool for examining the complete abolition of AChE activity and the role of BChE. AChE-KO mice live to adulthood, and exhibit an increased sensitivity to BChE inhibitors, suggesting that BChE activity facilitated their survival and compensated for AChE function. Our results show that BChE is present at the endplate region of wild-type and AChE-KO mature muscles. The decay time constant of focally recorded miniature endplate currents was 1.04 +/- 0.06 ms in wild-type junctions and 5.4 ms +/- 0.3 ms in AChE-KO junctions, and remained unaffected by BChE-specific inhibitors, indicating that BChE is not limiting ACh duration on endplate nAChRs. Inhibition of BChE decreased evoked quantal ACh release in AChE-KO NMJs. This reduction in ACh release can explain the greatest sensitivity of AChE-KO mice to BChE inhibitors. BChE is known to be localized in perisynaptic Schwann cells, and our results strongly suggest that BChE's role at the NMJ is to protect nerve terminals from an excess of ACh.  相似文献   
72.
Most known virulence determinants of Pseudomonas aeruginosa are remarkably conserved in this bacterium's core genome, yet individual strains differ significantly in virulence. One explanation for this discrepancy is that pathogenicity islands, regions of DNA found in some strains but not in others, contribute to the overall virulence of P. aeruginosa. Here we employed a strategy in which the virulence of a panel of P. aeruginosa isolates was tested in mouse and plant models of disease, and a highly virulent isolate, PSE9, was chosen for comparison by subtractive hybridization to a less virulent strain, PAO1. The resulting subtractive hybridization sequences were used as tags to identify genomic islands found in PSE9 but absent in PAO1. One 99-kb island, designated P. aeruginosa genomic island 5 (PAGI-5), was a hybrid of the known P. aeruginosa island PAPI-1 and novel sequences. Whereas the PAPI-1-like sequences were found in most tested isolates, the novel sequences were found only in the most virulent isolates. Deletional analysis confirmed that some of these novel sequences contributed to the highly virulent phenotype of PSE9. These results indicate that targeting highly virulent strains of P. aeruginosa may be a useful strategy for identifying pathogenicity islands and novel virulence determinants.  相似文献   
73.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
74.
Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT syndromes type 1, 2, and 3. We developed stochastic implementations of 13 major ionic currents and fluxes in a model of canine ventricular-myocyte electrophysiology. Combined stochastic gating of these components resulted in short- and long-term variability, consistent with experimental data from isolated canine ventricular myocytes. The model indicated that the magnitude of stochastic fluctuations is rate dependent due to the rate dependence of action-potential (AP) duration (APD). This process (the “active” component) and the intrinsic nonlinear relationship between membrane current and APD (“intrinsic component”) contribute to the rate dependence of BVR. We identified a major role in physiological BVR for stochastic gating of the persistent Na+ current (INa) and rapidly activating delayed-rectifier K+ current (IKr). Inhibition of IKr or augmentation of INa significantly increased BVR, whereas subsequent β-adrenergic receptor stimulation reduced it, similar to experimental findings in isolated myocytes. In contrast, β-adrenergic stimulation increased BVR in simulated long-QT syndrome type 1. In addition to stochastic channel gating, AP morphology, APD, and beat-to-beat variations in Ca2+ were found to modulate single-cell BVR. Cell-to-cell coupling decreased BVR and this was more pronounced when a model cell with increased BVR was coupled to a model cell with normal BVR. In conclusion, our results provide new insights into the ionic mechanisms underlying BVR and suggest that BVR reflects multiple potentially proarrhythmic parameters, including increased ion-channel stochasticity, prolonged APD, and abnormal Ca2+ handling.  相似文献   
75.
Material punishment has been suggested to play a key role in sustaining human cooperation. Experimental findings, however, show that inflicting mere material costs does not always increase cooperation and may even have detrimental effects. Indeed, ethnographic evidence suggests that the most typical punishing strategies in human ecologies (e.g., gossip, derision, blame and criticism) naturally combine normative information with material punishment. Using laboratory experiments with humans, we show that the interaction of norm communication and material punishment leads to higher and more stable cooperation at a lower cost for the group than when used separately. In this work, we argue and provide experimental evidence that successful human cooperation is the outcome of the interaction between instrumental decision-making and the norm psychology humans are provided with. Norm psychology is a cognitive machinery to detect and reason upon norms that is characterized by a salience mechanism devoted to track how much a norm is prominent within a group. We test our hypothesis both in the laboratory and with an agent-based model. The agent-based model incorporates fundamental aspects of norm psychology absent from previous work. The combination of these methods allows us to provide an explanation for the proximate mechanisms behind the observed cooperative behaviour. The consistency between the two sources of data supports our hypothesis that cooperation is a product of norm psychology solicited by norm-signalling and coercive devices.  相似文献   
76.
There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30–48 h. Photosynthesis and quantum yield peaked at subjective noon, and non‐photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light‐harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non‐stressed plants maximize photosynthesis.  相似文献   
77.
78.
Modification of chromosomal proteins by conjugation to SUMO is a key step to cope with DNA damage and to maintain the integrity of the genome. The recruitment of SUMO E3 ligases to chromatin may represent one layer of control on protein sumoylation. However, we currently do not understand how cells upregulate the activity of E3 ligases on chromatin. Here we show that the Nse2 SUMO E3 in the Smc5/6 complex, a critical player during recombinational DNA repair, is directly stimulated by binding to DNA. Activation of sumoylation requires the electrostatic interaction between DNA and a positively charged patch in the ARM domain of Smc5, which acts as a DNA sensor that subsequently promotes a stimulatory activation of the E3 activity in Nse2. Specific disruption of the interaction between the ARM of Smc5 and DNA sensitizes cells to DNA damage, indicating that this mechanism contributes to DNA repair. These results reveal a mechanism to enhance a SUMO E3 ligase activity by direct DNA binding and to restrict sumoylation in the vicinity of those Smc5/6‐Nse2 molecules engaged on DNA.  相似文献   
79.
80.
c-fos and c-jun mRNA induction and c-Fos and c-Jun protein expression were examined in the brains of adult rats subjected to systemic kainic acid (KA) injection at convulsant doses. Induction of c-fos and c-jun mRNA, as seen with in situ hybridization, occurred in the piriform and entorhinal cortices, neocortex, amygdala, hippocampus, dentate gyrus, and discrete thalamic nuclei. This was followed by c-Fos protein expression, as revealed with immunohistochemistry, in the same regions. However, the distribution of c-Jun protein expression differed depending on the antibody used. The distribution of cells immunostained with the antibody c-Jun (AB-1) was similar to that of c-jun mRNA, but the distribution of cells immunostained with the antibody c-Jun/AP1 (N) was restricted to a few neurons in the pyramidal cell layer of CA1 and CA3, layer II of the piriform and entorhinal cortices, basal amygdala, and discrete thalamic nuclei. Although the regional distribution of c-Fos- and c-Jun-immunoreactive cells in the hippocampus, layer II of the entorhinal and piriform cortices, basal amygdala, and discrete thalamic nuclei matched the distribution of cells committed to dying, c-Fos- and c-Jun-immunoreactive cells in the neocortex and dentate gyrus survived. Therefore, the present data show that c-fos and c-jun are not predictors of either cell death or survival, but rather, markers of cells sensitive to KA excitotoxicity. Western blots to c-Fos showed a double band at p62 in samples containing the hippocampus and entorhinal and piriform cortices (hip samples) and in samples containing the neocortex (cortex samples). The upper band was abolished following preincubation of the samples with alkaline phosphatase, thus suggesting c-Fos phosphorylation. Western blots to c-Jun (AB-1) showed a single band at about p39 in hip and cortex. However, Western blots to c-Jun/AP1 (N) identified two bands. One band at about p39 was seen in control rats and the cortex of KA-treated rats. Another band at p26 was observed only in hip samples of KA-treated rats. In addition, decreased c-Jun N-terminal kinase 1 (JNK-1) expression, as revealed on Western blots, was coincidental with the appearance of the p26 c-Jun-immunoreactive band in KA-treated rats. These results show that c-Fos and different Jun-related antigens are expressed following KA excitotoxicity, and that posttranslational modifications involving phosphorylation of c-Fos and Jun(s) may occur following KA injection. These results also stress the necessity of examining the composition of Fos and Jun-related antigens and the metabolic state of Fos and Jun(s) in different experimental models of nervous system injury. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 232–246, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号