首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2284篇
  免费   186篇
  国内免费   1篇
  2471篇
  2024年   4篇
  2023年   21篇
  2022年   27篇
  2021年   47篇
  2020年   34篇
  2019年   44篇
  2018年   60篇
  2017年   65篇
  2016年   77篇
  2015年   134篇
  2014年   151篇
  2013年   162篇
  2012年   196篇
  2011年   173篇
  2010年   116篇
  2009年   113篇
  2008年   132篇
  2007年   120篇
  2006年   136篇
  2005年   116篇
  2004年   97篇
  2003年   93篇
  2002年   92篇
  2001年   37篇
  2000年   25篇
  1999年   24篇
  1998年   18篇
  1997年   15篇
  1996年   10篇
  1995年   19篇
  1994年   12篇
  1993年   13篇
  1992年   11篇
  1991年   11篇
  1990年   15篇
  1989年   10篇
  1988年   14篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1960年   1篇
  1953年   1篇
排序方式: 共有2471条查询结果,搜索用时 9 毫秒
991.
992.
993.
Accelerated sea-level rise is expected to cause the salinization of freshwater wetlands, but the responses to salinity of the availability of soil phosphorus (P) and of microbial genes involved in the cycling of P remain unexplored. We conducted a field experiment to investigate the effects of salinity on P cycling by soil microbial communities and their regulatory roles on P availability in coastal freshwater and brackish wetlands. Salinity was positively correlated with P availability, with higher concentrations of labile P but lower concentrations of moderately labile P in the brackish wetland. The diversity and richness of microbial communities involved in P cycling were higher in the brackish wetland than the freshwater wetland. Salinity substantially altered the composition of the P-cycling microbial community, in which those of the brackish wetland were separated from those of the freshwater wetland. Metagenomic sequence analysis indicated that functional genes involved in the solubilization of inorganic P and the subsequent transport and regulation of P were more abundant in coastal soils. The relative abundances of most of the target genes differed between the wetlands, with higher abundances of P-solubilization (gcd and ppa) and -mineralization (phoD, phy, and ugpQ) genes and lower abundances of P-transport genes (pstB, ugpA, ugpB, ugpE, and pit) in the brackish wetland. A significant positive correlation between the concentration of labile P and the abundances of the target genes suggested that salinity may, at least in part, improve P availability by regulating the P-cycling microbial community. Our results suggest that the P-cycling microbial community abundance and P availability respond positively to moderate increases in salinity by promoting the microbial solubilization and mineralization of soil P. Changes in microbial communities and microbially mediated P cycling may represent microbial strategies to adapt to moderate salinity levels, which in turn control soil function and nutrient balance.  相似文献   
994.
Microbial metabolic products play a vital role in maintaining ecosystem multifunctionality, such as soil physical structure and soil organic carbon (SOC) preservation. Afforestation is an effective strategy to restore degraded land. Glomalin-related soil proteins (GRSP) and amino sugars are regarded as stable microbial-derived C, and their distribution within soil aggregates affects soil structure stability and SOC sequestration. However, the information about how afforestation affects the microbial contribution to SOC pools within aggregates is poorly understood. We assessed the accumulation and contribution of GRSP and amino sugars within soil aggregates along a restoration chronosequence (Bare land, Eucalyptus exserta plantation, native species mixed forest, and native forest) in tropical coastal terraces. Amino sugars and GRSP concentrations increased, whereas their contributions to the SOC pool decreased along the restoration chronosequence. Although microaggregates harbored greater microbial abundances, amino sugars and GRSP concentrations were not significantly affected by aggregate sizes. Interestingly, the contributions of amino sugars and GRSP to SOC pools decreased with decreasing aggregate size which might be associated with increased accumulation of plant-derived C. However, the relative change rate of GRSP was consistently greater in all restoration chronosequences than that of amino sugars. The accumulation of GRSP and amino sugars in SOC pools was closely associated with the dynamics of soil fertility and the microbial community. Our findings suggest that GRSP accumulates faster and contributes more to SOC pools during restoration than amino sugars did which was greatly affected by aggregate sizes. Afforestation substantially enhanced soil quality with native forest comprising species sequestering more SOC than the monoculture plantation did. Such information is invaluable for improving our mechanistic understanding of microbial control over SOC preservation during degraded ecosystem restoration. Our findings also show that plantations using arbuscular mycorrhizal plants can be an effective practice to sequester more soil carbon during restoration.  相似文献   
995.

Aim

The global vertical depth distribution of seagrass species remains poorly understood. Locally, the abundance and distribution of seagrasses is determined by light penetration, but at global levels each seagrass species has very distinct maximum distributional depth ranges, indicating that plant-associated traits must also influence their specific depth ranges. Seagrass-specific attributes, such as plant size or architecture, growth or reproductive strategy and their physiological and/or morphological acclimatization potential, have been suggested to be responsible for this variety of vertical distributions. We investigate here whether these species-specific traits drive differences in the global maximum vertical distribution of seagrasses.

Location

Global.

Time period

Publications between 1982 and 2020.

Major taxa studied

Seagrasses (order Alismatales).

Methods

We tested whether the species-specific maximum vertical distribution of seagrasses can be predicted by (1) their rhizome diameter (a proxy for plant size); (2) their functional resilience (growth/reproductive strategy); or (3) their acclimatization capacity. For the last aspect, we used a systematic review followed by meta-analytical approaches to select key seagrass traits that could potentially acclimatize to extreme light ranges across different seagrasses.

Results

We found that vertical distribution is best explained by the species-specific acclimatization capacity of various seagrass traits, including saturation irradiance (physiological trait), leaves per shoot (morphological trait) and above-ground biomass (structural trait). In contrast, our results indicate no predictive power of seagrass size or growth/reproductive strategy on the vertical distribution of seagrasses.

Main conclusions

Across the globe, the ability of seagrass species to thrive at a wide range of depths is strongly linked to the species-specific acclimatization capacity of key traits at different organizational levels.  相似文献   
996.
The relationship linking Na+ and H+ transports and exocytosis/endocytosis located in the apical membranes of the frog skin epithelium was investigated under various conditions of ion transport stimulation. The exocytosis process, indicating insertion of intracellular vesicles, which were preloaded with fluorescent FITC-dextran (FD), was measured by following the FD efflux in the apical bathing solution.Na+ transport stimulators such as serosal hypotonic shock (replacement of serosal Ringer solution by half-Ringer or 4/5-Ringer), apical PCMPS (10–3 m) and amphotericin-B (20 g/ml), were also found to stimulate the exocytotic rates of FD. Acidification of the epithelium by CO2 or post NH4 load, conditions which increase the proton secretion also stimulated the FD release in the apical bathing solution. On the other hand, alkalization of the epithelial cells increased the endocytosis rate. Hypotonic shock, acid load and PCMPS induced an increase in cell calcium which is probably the signal within the cell for exocytosis. In addition, quantitative spectrofluorimetric measurements of F-actin content after rhodamine-phalloidin staining, indicated a decrease in the F-actin content as a result of cell acidosis, hypotonic conditions and amphotericin additions. It is proposed that the insertion/retrieval of intracytoplasmic vesicles containing H+ pumps plays a key role in the regulation of proton secretion in tight epithelia. In addition, it is suggested that cytoskeleton depolymerization of F-actin filaments facilitates H+ pump insertion. A comparable working hypothesis for the control of Na+ transport is proposed.This work was supported by grants from the Commissariat à l'Energie Atomique and The Centre National de la Recherche Scientifique UA 638.We would like to thank Dr. R.M. Hays and Dr. J. Condeelis (Albert Einstein College of Medicine, New York) for stimulating discussions. The confocal microscope observations were done through the courtesy of Dr. C. Sardet and C. Rouvière (Station Marine de Villefranche/mer France).  相似文献   
997.
Abstract Leishmania (Leishmania) infantum is the causative agent of both the cutaneous and visceral forms of leishmaniasis in southwest Europe; the dog is the main reservoir. In order to identify the L. (L.) infantum zymodemes present in Spain, a total number of 85 Leishmania stocks isolated from dogs (31), HIV-positive patients (46) with visceral or cutaneous leishmaniasis, a patient with visceral leishmaniasis complicating renal transplantation (1) and immunocompetent patients (7) with visceral or cutaneous leishmaniasis, have been characterized by isoenzyme typing. All canine stocks were MON-1, which is the most widespread zymodeme in the Mediterranean area. In immunocompetent patients three zymodemes were found: MON-1 (2), MON-24 (2) and MON-34 (3). Nine different zymodemes were obtained in stocks from HTV co-infected patients, indicating a higher variability of L. (L.) infantum amongst them: MON-1 (in 21 stocks), MON-24 (7), MON-28 (1), MON-29 (3), MON-33 (7), MON-34 (1) and MON-183 (4). Two new zymodemes, MON-198 (1) and MON-199 (1), were described among HIV patients from Spain. The stock from the renal transplanted patient was MON-1. The exclusive presence of certain zymodemes in immunocompromised patients and their absence in typical cases of cutaneous and visceral  相似文献   
998.
Summary Chimeric -galactosidase fusion proteins containing foreign peptides inserted either at the amino terminus or at inner sites have been studied regarding their purification properties. Whereas fusions at the amino terminal are retained less on TPEG-Sepharose columns than native -galactosidase, the insertion in a specific site of the activating interface increases the binding of the modified -galactosidase. This offers a way to construct more powerful -galactosidase purification tags.  相似文献   
999.
Average specific density of individual cells of pure cultures of Chromatium warmingii and Chromatium vinosum were measured by isopicnic gradient centrifugation with Percoll during growth at constant illumination as a function of the increasing content of intracellular sulfur. Cell number and volume, bacteriochlorophyll a, sulfide, and sulfur were followed in the cultures along with cellular buoyant density. Poly--hydroxybutyrate was monitored at several points during growth of the cultures. The density of C. warmingii changed from 1.071 to 1.108 g cm-3 (sulfur content per cell varied from 0 to 1.71pg). C. vinosum changed its density from 1.096 to 1.160 g cm-3 (sulfur content per cell varied from 0 to 0.43 pg). Maximum sulfur content in pg of sulfur per m3 of cell volume were 0.178 for C. warmingii and 0.294 for C. vinosum. Measurement of the differences in buoyant density, volume and sulfur content before and after ethanol extraction of cells with and without intracellular sulfur, allowed tentatively to estimate the density of sulfur inside the cells as 1.219 g cm-3. Isolation of sulfur globules and centrifugation in density gradients gave a density higher than 1.143 g cm-3 for these intracellular inclusions.Non-common abbreviations Bchl Bacteriochlorophyll - DMB Density Marker Beads - PHB poly--hydroxybutyrate  相似文献   
1000.
Plant–animal mutualistic networks are interaction webs consisting of two sets of entities, plant and animal species, whose evolutionary dynamics are deeply influenced by the outcomes of the interactions, yielding a diverse array of coevolutionary processes. These networks are two‐mode networks sharing many common properties with others such as food webs, social, and abiotic networks. Here we describe generalized patterns in the topology of 29 plant–pollinator and 24 plant–frugivore networks in natural communities. Scale‐free properties have been described for a number of biological, social, and abiotic networks; in contrast, most of the plant–animal mutualistic networks (65.6%) show species connectivity distributions (number of links per species) with a power‐law regime but decaying as a marked cut‐off, i.e. truncated power‐law or broad‐scale networks and few (22.2%) show scale‐invariance. We hypothesize that plant–animal mutualistic networks follow a build‐up process similar to complex abiotic nets, based on the preferential attachment of species. However, constraints in the addition of links such as morphological mismatching or phenological uncoupling between mutualistic partners, restrict the number of interactions established, causing deviations from scale‐invariance. This reveals generalized topological patterns characteristic of self‐organized complex systems. Relative to scale‐invariant networks, such constraints may confer higher robustness to the loss of keystone species that are the backbone of these webs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号