全文获取类型
收费全文 | 3752篇 |
免费 | 348篇 |
国内免费 | 10篇 |
专业分类
4110篇 |
出版年
2023年 | 26篇 |
2022年 | 72篇 |
2021年 | 88篇 |
2020年 | 55篇 |
2019年 | 66篇 |
2018年 | 63篇 |
2017年 | 59篇 |
2016年 | 93篇 |
2015年 | 153篇 |
2014年 | 166篇 |
2013年 | 182篇 |
2012年 | 231篇 |
2011年 | 259篇 |
2010年 | 133篇 |
2009年 | 121篇 |
2008年 | 187篇 |
2007年 | 169篇 |
2006年 | 145篇 |
2005年 | 131篇 |
2004年 | 101篇 |
2003年 | 107篇 |
2002年 | 109篇 |
2001年 | 78篇 |
2000年 | 71篇 |
1999年 | 84篇 |
1998年 | 34篇 |
1997年 | 32篇 |
1996年 | 38篇 |
1995年 | 23篇 |
1994年 | 29篇 |
1992年 | 49篇 |
1991年 | 37篇 |
1990年 | 36篇 |
1989年 | 39篇 |
1988年 | 33篇 |
1987年 | 26篇 |
1986年 | 30篇 |
1985年 | 39篇 |
1983年 | 34篇 |
1982年 | 29篇 |
1980年 | 24篇 |
1979年 | 28篇 |
1978年 | 23篇 |
1973年 | 24篇 |
1972年 | 26篇 |
1958年 | 24篇 |
1957年 | 31篇 |
1956年 | 29篇 |
1955年 | 22篇 |
1954年 | 25篇 |
排序方式: 共有4110条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
A Banerjee M A Jordan R F Luduena 《Biochemical and biophysical research communications》1985,128(2):506-512
Incubation of phosphocellulose-purified tubulin with GSH at 30 degrees C results in an inhibition of colchicine binding activity. GSSG has a protective effect against the GSH-induced loss of colchicine-binding. Incubation of tubulin with GSH at 30 degrees C results in the formation of abnormal tubulin polymers which are insensitive to cold. Such aggregation is insensitive to antimicrotubular drugs. Aggregation is inhibited by GSSG but not by DTT or mercaptoethanol. GSH-induced aggregation is very sensitive to the ionic strength of the assembly medium; both the aggregation and colchicine binding inhibition induced by GSH are inhibited at higher ionic strength. These results indicate a very complex interaction of GSH with tubulin. 相似文献
6.
7.
Tsetse eradication plans for southern Africa 总被引:1,自引:0,他引:1
Jordan AM 《Parasitology today (Personal ed.)》1985,1(5):121-123
8.
Heme regulation of HeLa cell transferrin receptor number 总被引:15,自引:0,他引:15
J H Ward I Jordan J P Kushner J Kaplan 《The Journal of biological chemistry》1984,259(21):13235-13240
The number of diferic transferrin receptors on HeLa cells decreases when cells are grown in iron-supplemented media. The experiments reported here suggest that heme is the iron-containing compound which serves as the signal for receptor number regulation. When HeLa cells were grown in the presence of hemin, transferrin receptor number decreased to a greater degree than when cells were grown in equivalent amounts of iron supplied as ferric ammonium citrate. Incubation of cells in conditions which increased cellular heme content resulted in a decrease in cellular transferrin receptors. Incubating cells with 5-aminolevulinic acid (thus bypassing the rate-limiting step in heme biosynthesis, 5-aminolevulinic acid synthase) led to a decrease in transferrin receptor number. Incubation of cells with an inhibitor of heme oxygenase, Sn-protoporphyrin IX, also led to a decrease in transferrin receptor number. When cellular heme content was decreased by inhibiting heme synthesis with succinylacetone (an inhibitor of 5-aminolevulinic acid dehydratase), or by depriving cells of iron with deferoxamine, an increase in HeLa cell transferrin receptor number was seen. When HeLa cells were incubated with inducers of heme oxygenase (CoCl2, SnCl2, Co-protoporphyrin IX), transferrin receptor number also increased. The effects of all compounds which alter transferrin receptor number were dependent on the concentration of the supplement, as well as the duration of the supplementation. These experiments suggest that intracellular heme content may be an important signal controlling transferrin receptor number. 相似文献
9.
10.