首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3389篇
  免费   335篇
  国内免费   1篇
  3725篇
  2023年   24篇
  2022年   70篇
  2021年   86篇
  2020年   52篇
  2019年   65篇
  2018年   61篇
  2017年   53篇
  2016年   93篇
  2015年   147篇
  2014年   162篇
  2013年   175篇
  2012年   222篇
  2011年   250篇
  2010年   123篇
  2009年   106篇
  2008年   171篇
  2007年   160篇
  2006年   134篇
  2005年   128篇
  2004年   93篇
  2003年   103篇
  2002年   108篇
  2001年   74篇
  2000年   69篇
  1999年   76篇
  1998年   29篇
  1997年   26篇
  1996年   27篇
  1995年   20篇
  1994年   25篇
  1992年   47篇
  1991年   35篇
  1990年   36篇
  1989年   37篇
  1988年   32篇
  1987年   26篇
  1986年   29篇
  1985年   39篇
  1984年   21篇
  1983年   30篇
  1982年   29篇
  1981年   20篇
  1980年   21篇
  1979年   26篇
  1978年   19篇
  1977年   21篇
  1973年   24篇
  1972年   24篇
  1970年   21篇
  1969年   18篇
排序方式: 共有3725条查询结果,搜索用时 0 毫秒
41.
We are exploring the potential to trace species evolution with the ribosomal proteins (RibPs) present in bacterial, eukaryotic, and archaeal ribosomes and to compare the independent trees for consistency. The complete genomes of over 8400 bacteria, eukaryota, and archaea are presently in the SwissPro/TrEMBL (SPT) database. A search of SPT using a vector designed with ScanProsite formats (V1) finds and aligns 8405 sequences (5312 bacterial, 2905 eukaryotic, and 169 archaeal) that are homologous with bone fide bacterial S19 ribosomal proteins(S19s). When the 8405 sequences are perfectly aligned, 15 residues are conserved at 90% identity and 40 are conserved at 70% identity. We are not aware of any previous publication reporting sequence alignment of 8400 members of any single family including all bacteria, eukaryota and archaea, for which complete genomes have been published.A Pro and a Gly separated by 11 residues are 100% conserved in the 8405 S19s. In the position immediately before the fully conserved Gly, two residues (Asp and Asn) are present in 98.3% of the 8405 sequences. The Asp residue is found almost exclusively in 2190 gram-positive bacteria. The Asn residue is found in 3065 gram-negative bacteria, 123 Archaea, 1939 eukaryotes, and 64 specific species of gram-positive bacteria. There is biochemical evidence for the existence of distinct mitochondrial, chloroplast, and cytosolic ribosomes and reports that plants have all three forms and mammals only two. Reliable data concerning how individual ribosomal proteins differ in different types of ribosomes are meager. Examination of the eukaryotic S19s reveals the existence of three distinct types. Two of the distinctly different types are found in most fungi, three of the types are found in some viridiplante, and only one type is found in metazoa and archaea. We demonstrate the sequence homology between the mitochondrial form found in fungi and plants and the S19 proteins of alpha proteobacteria; between the chloroplast S19s and the S19s of cyanobacteria; and among the cytosolic S19s found only in fungi, metazoa, archaea, and in some viridiplantae. Our findings suggest that most archaeal species appeared after a gene duplication event in fungi that correlates with the origin of the cytosolic ribosome.  相似文献   
42.
Using a quartz crystal microbalance with dissipative monitoring (QCM-D) we have determined the adsorption reversibility and viscoelastic properties of ribonuclease A adsorbed to hydrophobic self-assembled monolayers. Consistent with previous work with proteins unfolding on hydrophobic surfaces, high protein solution concentrations, reduced adsorption times, and low ammonium sulfate concentrations lead to increased adsorption reversibility. Measured rigidity of the protein layers normalized for adsorbed protein amounts, a quantity we term specific dissipation, correlated with adsorption reversibility of ribonuclease A. These results suggest that specific dissipation may be correlated with changes in structure of adsorbed proteins.  相似文献   
43.
44.
45.
As part of our ongoing efforts to develop reversible inhibitors of LSD1, we identified a series of 4-(pyrrolidin-3-yl)benzonitrile derivatives that act as successful scaffold-hops of the literature inhibitor GSK-690. The most active compound, 21g, demonstrated a Kd value of 22 nM and a biochemical IC50 of 57 nM. In addition, this compound displayed improved selectivity over the hERG ion channel compared to GSK-690, and no activity against the related enzymes MAO-A and B. In human THP-1 acute myeloid leukaemia cells, 21g was found to increase the expression of the surrogate cellular biomarker CD86. This work further demonstrates the versatility of scaffold-hopping as a method to develop structurally diverse, potent inhibitors of LSD1.  相似文献   
46.
The seasonal patterns in concentrations of both soluble (NSC-S)and insoluble (NSC-I) non-structural carbohydrates, in 3-year-oldpeach trees (Prunus persica L. Batsch) grown in sand cultureare described. The ability of trees to mobilize their carbohydratereserves in response to scion-trunk girdling, which preventsphotosynthate transport toward the roots, was tested at fourphenological stages. Girdling induces a NSC-I depletion in rootsand rootstock-trunk bark and a NSC-I accumulation in leavesand shoots. On the contrary, the NSC-S concentrations of theorgans located both above and below girdling were not significantlyaffected by the treatment. Consequently, when phloem transportbreaks down, trees, whatever their growing stage, mobilize carbohydratereserves below the girdle to maintain the soluble sugar contentsat the same level as in control trees. Key words: Girdling, non-structural carbohydrates, Prunus persica L., carbon reserves, seasonal patterns  相似文献   
47.
48.
Drosophila melanogaster 5.8S and 2S rRNAs were end-labeled with 32p at either the 5' or 3' end and were sequenced. 5.8S rRNA is 123 nucleotides long and homologous to the 5' part of sequenced 5.8S molecules from other species. 2S rRNA is 30 nucleotides long and homologous to the 3' part of other 5.8S molecules. The 3' end of the 5.8S molecule is able to base-pair with the 5' end of the 2S rRNA to generate a helical region equivalent in position to the "GC-rich hairpin" found in all previously sequenced 5.8S molecules. Probing the structure of the labeled Drosophila 5.8S molecule with S1 nuclease in solution verifies its similarity to other 5.8S rRNAs. The 2S rRNA is shown to form a stable complex with both 5.8S and 26S rRNAs separately and together. 5.8S rRNA can also form either binary or ternary complexes with 2S and 26S rRNA. It is concluded that the 5.8S rRNA in Drosophila melanogaster is very similar both in sequence and structure to other 5.8 rRNAs but is split into two pieces, the 2S rRNA being the 3' part. 2S anchors the 5.8S and 26S rRNA. The order of the rRNA coding regions in the ribosomal DNA repeating unit is shown to be 18S - 5.8S - 2S - 26S. Direct sequencing of ribosomal DNA shows that the 5.8S and 2S regions are separated by a 28 nucleotide spacer which is A-T rich and is presumably removed by a specific processing event. A secondary structure model is proposed for the 26S-5.8S ternary complex and for the presumptive precursor molecule.  相似文献   
49.
The HLA-CW3 gene contained in a cosmid clone identified by transfection expression experiments has been completely sequenced. This provides, for the first time, data on the structure of HLA-C locus products and constitutes, together with that of the gene coding for HLA-A3, the first complete nucleotide sequences of genes coding for serologically defined class I HLA molecules. In contrast to the organisation of the two class I HLA pseudogenes whose sequences have previously been determined, the sequence of the HLA-CW3 gene reveals an additional cytoplasmic encoding domain, making the organisation of this gene very similar to that of known H-2 class I genes and also the HLA-A3 gene. The deduced amino acid sequences of HLA-CW3 and HLA-A3 now allow a systematic comparison of such sequences of HLA class I molecules from the three classical transplantation antigen loci A, B, C. The compared sequences include the previously determined partial amino acid sequences of HLA-B7, HLA-B40, HLA-A2 and HLA-A28. The comparisons confirm the extreme polymorphism of HLA classical class I molecules, and permit a study of the level of diversity and the location of sequence differences. The distribution of differences is not uniform, most of them being located in the first and second extracellular domains, the third extracellular domain is extremely conserved, and the cytoplasmic domain is also a variable region. Although it is difficult to determine locus-specific regions, we have identified several candidate positions which may be C locus-specific.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号