首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   8篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   8篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2002年   3篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   7篇
  1982年   1篇
  1981年   5篇
  1980年   5篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有125条查询结果,搜索用时 373 毫秒
21.
22.
23.
Mental training affects distribution of limited brain resources   总被引:1,自引:0,他引:1  
The information processing capacity of the human mind is limited, as is evidenced by the so-called “attentional-blink” deficit: When two targets (T1 and T2) embedded in a rapid stream of events are presented in close temporal proximity, the second target is often not seen. This deficit is believed to result from competition between the two targets for limited attentional resources. Here we show, using performance in an attentional-blink task and scalp-recorded brain potentials, that meditation, or mental training, affects the distribution of limited brain resources. Three months of intensive mental training resulted in a smaller attentional blink and reduced brain-resource allocation to the first target, as reflected by a smaller T1-elicited P3b, a brain-potential index of resource allocation. Furthermore, those individuals that showed the largest decrease in brain-resource allocation to T1 generally showed the greatest reduction in attentional-blink size. These observations provide novel support for the view that the ability to accurately identify T2 depends upon the efficient deployment of resources to T1. The results also demonstrate that mental training can result in increased control over the distribution of limited brain resources. Our study supports the idea that plasticity in brain and mental function exists throughout life and illustrates the usefulness of systematic mental training in the study of the human mind.  相似文献   
24.
Tick-host-pathogen interactions in Lyme borreliosis   总被引:1,自引:0,他引:1  
Borrelia burgdorferi, the spirochetal agent of Lyme borreliosis, is predominantly transmitted by Ixodes ticks. Spirochetes have developed many strategies to adapt to the different environments that are present in the arthropod vector and the vertebrate host. This review focuses on B. burgdorferi genes that are preferentially expressed in the tick and the vertebrate host, and describes how selected gene products facilitate spirochete survival throughout the enzootic life cycle. Interestingly, B. burgdorferi also enhances expression of specific Ixodes scapularis genes, such as TROSPA and salp15. The importance of these genes and their products for B. burgdorferi survival within the tick, and during the transmission process, will also be reviewed. Moreover, we discuss how such vector molecules could be used to develop vector-antigen-based vaccines to prevent the transmission of B. burgdorferi and, potentially, other arthropod-borne microbes.  相似文献   
25.

Background and aims

The decomposition of roots is an important process in the loss of carbon (C) and the mineralization of nitrogen (N) in forest ecosystems. The early stage decomposition rate of Sitka spruce (Picea sitchensis (Bong.) Carr.) roots was determined using trenched plots and decomposition bags.

Methods

Stumps of known age were trenched and quadrants (50?cm by 50?cm) excavated from randomly selected stumps every 6?months over 4?years, while the mass loss from buried roots in decomposition bags, divided among four diameter categories (ranging from fine roots <2?mm to large roots >50?mm), was monitored for 27?months. The C and N concentrations of excavated samples at different time points were analysed.

Results

The change in total root necromass per quadrant showed a higher decomposition rate-constant (k) of 0.24?±?0.068?year?1 than the k-value of roots in decomposition bags (0.07?±?0.005?year?1). The C concentration (47.24?±?0.609?%) did not significantly change with decomposition. There was a significant increase in the C:N ratio of roots in all diameter categories (fine: 48.92?%, small: 38.53?%, medium 11.71?%, large: 76.25?%) after 4?years of decomposition, driven by N loss. Root diameter accounted for 78?% of the variation in the N concentration of roots as decomposition progressed.

Conclusion

Though the trenched plot approach offered an alternative to the more common decomposition bag method for estimating root decomposition, high spatial variation and sampling difficulties may lead to an overestimation of the mass loss from trenched roots, thus, the decomposition bag method gives a more reliable decomposition rate-constant.  相似文献   
26.
27.
1. Pig mitochondrial malate dehydrogenase was labelled with 125I and intravenously injected into rats. Enzyme activity and radioactivity were cleared from plasma identically, with first-order kinetics, with a half-life of only 7 min. 2. Radioactivity accumulated in liver, spleen, bone (marrow) and kidneys, reaching maxima of 3 1, 4, 6 and 9% of the injected dose respectively, at 10 min after injection. 3. Our data allow us to calculate that in the long run 59, 5, 11 and 13% of the injected dose is taken up and subsequently broken down by liver, spleen, bone and kidneys respectively. 4. Differential fractionation of liver showed that the acid-precipitable radioactivity was mainly present in the lysosomal and microsomal fractions, suggesting that the endocytosed protein is transported via endosomes to lysosomes, where it is degraded. 5. Radioautography of liver and spleen suggested that the labelled protein was taken up by macrophages of the reticuloendothelial system. 6. Mitochondrial malate dehydrogenase is probably internalized in liver, spleen and bone marrow by adsorptive endocytosis, since uptake of the enzyme of these tissues is saturable.  相似文献   
28.
Summary The migration pattern of germinal center cells of the rabbit appendix was studied and compared with that of appendix dome cells, spleen cells, thymus cells and thoracic duct lymphocytes. To discriminate T-and B-cell migration pathways, normal or T-cell-depleted rabbits were used as donors. Cell suspensions were labeled in vitro with 3H-leucine followed by intravenous transfer. The migration of labeled cells in lymphoid organs was studied using autoradiography, particular attention being paid to the spleen of the recipient. B-cells from the appendix dome, spleen and thoracic-duct lymph migrate to primary follicles or the corona of secondary follicles via thymus-dependent areas of peripheral lymphoid organs. In contrast, a B-cell subpopulation from the germinal centers of the appendix migrates to the center of splenic primary follicles and into germinal centers. The migration of germinal center cells to splenic follicle centers is not enhanced by specific antigens. The migration properties of B-cells, possibly changing during differentiation, may be instrumental in the two types of immune reactions, i.e., plasma-cell reaction and germinal-center reaction.  相似文献   
29.
Summary Thoracic duct lymphocytes (TDL) were studied with respect to their capacity to give rise to germinal centres (GC) and to form primary antibody in an adoptive transfer system of the rat. Challenge with sheep erythrocytes (SRBC) 24h after lethal irradiation (900 rads) and syngeneic TDL reconstitution (108) lead to conspicuous GC activity already 7 days after transfer. In contrast, using syngeneic bone marrow (BM) in the adoptive transfer system, no GC formation was observed over the period studied (14 days after reconstitution). Reconstitution experiments using in vivo-separated T-TDL (1–5 % s-Ig+) and B-TDL (>90% s-Ig+) subpopulations, either separately or in combination, indicated that GC originate from B-TDL but require T-TDL for induction.Abbreviations BM Bone Marrow - TDL Thoracic Duct Lymphocytes - GC Germinal Centre - SRBC Sheep Red Blood Cells - GCDC Germinal Centre-Derived Cells - GCPC Germinal Centre-Precursor Cells - DAB Mineral Salt Solution Dulbecco A + B - FCS Fetal Calf Serum - PALS Peri-Arteriolar Lymphocyte Sheath - AFCP Antibody-Forming Cell Precursors  相似文献   
30.
Initial uptake of Mn2+ and Sr2+ in the yeast Saccharomyces cerevisiae was studied in order to investigate the selectivity of the divalent cation uptake system and the possible involvement of the plasma-membrane ATPase in this uptake. The initial uptake rates of the two ions were not significantly different. This ruled out a direct role of the plasma-membrane ATPase, since this ATPase is specific for Mn2+ compared to Sr2+. After 1 h uptake, Mn2+ had accumulated 10-times more than Sr2+. Influx of Mn2+ and Sr2+ remained unchanged during that time, however. The differences in accumulation level found for Mn2+ and Sr2+ could be ascribed to a greater efflux of Sr2+ as compared with Mn2+. Probably this greater efflux of Sr2+ was only apparent, since differential extraction of the yeast cells revealed that Mn2+ is more compartmentalised than Sr2+, giving rise to a lower relative cytoplasmic Mn2+ concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号