首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   123篇
  2023年   8篇
  2022年   9篇
  2021年   20篇
  2020年   7篇
  2019年   15篇
  2018年   22篇
  2017年   18篇
  2016年   40篇
  2015年   68篇
  2014年   69篇
  2013年   76篇
  2012年   103篇
  2011年   111篇
  2010年   71篇
  2009年   66篇
  2008年   90篇
  2007年   78篇
  2006年   62篇
  2005年   67篇
  2004年   70篇
  2003年   53篇
  2002年   60篇
  2001年   16篇
  2000年   11篇
  1999年   11篇
  1998年   9篇
  1997年   3篇
  1996年   8篇
  1995年   9篇
  1994年   6篇
  1993年   6篇
  1991年   8篇
  1990年   8篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1967年   2篇
排序方式: 共有1340条查询结果,搜索用时 156 毫秒
991.
Glutamine synthetase activity is modulated by nitrogen repression and by two distinct inactivation processes. Addition of glutamine to exponentially grown yeast leads to enzyme inactivation. 50% of glutamine synthetase activity is lost after 30 min (a quarter of the generation time). Removing glutamine from the growth medium results in a rapid recovery of enzyme activity. A regulatory mutation (gdhCR mutation) suppresses this inactivation by glutamine in addition to its derepressing effect on enzymes involved in nitrogen catabolism. The gdhCR mutation also increases the level of proteinase B in exponentially grown yeast. Inactivation of glutamine synthetase is also observed during nitrogen starvation. This inactivation is irreversible and consists very probably of a proteolytic degradation. Indeed, strains bearing proteinase A, B and C mutations are no longer inactivated under nitrogen starvation.  相似文献   
992.
In Saccharomyces cerevisiae, the transport of ammonium across the plasma membrane for use as a nitrogen source is mediated by at least two functionally distinct transport systems whose respective encoding genes are called MEP1 and MEP2. Mutations in the MEP2 gene affect high affinity, low capacity ammonium transport while mutations in the MEP1 gene disrupt a lower affinity, higher capacity system. In this work, the MEP1 gene has been cloned and sequenced and its expression analyzed. The predicted amino acid sequence reveals a highly hydrophobic, 54 kDa protein with 10 or 11 putative membrane-spanning regions. The predicted Mep1p protein shares high sequence similarity with several bacterial proteins of unknown function, notably the product of the nitrogen-regulated nrgA gene of Bacillus subtilis, and with that of a partial cDNA sequence derived from Caenorhabditis elegans. The Mep1p and related proteins appear to define a new family of transmembrane proteins evolutionarily conserved in at least bacteria, fungi and animals. The MEP1 gene is most highly expressed when the cells are grown on low concentrations of ammonium or on 'poor' nitrogen sources like urea or proline. It is down-regulated, on the other hand, when the concentration of ammonium is high or when other 'good' nitrogen sources like glutamine or asparagine are supplied in the culture medium. The overall properties of Mep1p indicate that it is a transporter of ammonium. Its main function appears to be to enable cells grown under nitrogen-limiting conditions to incorporate ammonium present at relatively low concentrations in the growth medium.  相似文献   
993.
The effects of steroids on the outcome of sepsis are dose dependent. Low doses appear to be beneficial, but high doses do not improve outcome for reasons that are insufficiently understood. The effects of steroids on systemic inflammation as a function of dose have not previously been studied in humans. To determine the effects of increasing doses of prednisolone on inflammation and coagulation in humans exposed to LPS, 32 healthy males received prednisolone orally at doses of 0, 3, 10, or 30 mg (n = 8 per group) at 2 h before i.v. injection of Escherichia coli LPS (4 ng/kg). Prednisolone dose-dependently inhibited the LPS-induced release of cytokines (TNF-alpha and IL-6) and chemokines (IL-8 and MCP-1), while enhancing the release of the anti-inflammatory cytokine IL-10. Prednisolone attenuated neutrophil activation (plasma elastase levels) and endothelial cell activation (von Willebrand factor). Most remarkably, prednisolone did not inhibit LPS-induced coagulation activation, measured by plasma concentrations of thrombin-antithrombin complexes, prothrombin fragment F1+2, and soluble tissue factor. In addition, activation of the fibrinolytic pathway (tissue-type plasminogen activator and plasmin-alpha(2)-antiplasmin complexes) was dose-dependently enhanced by prednisolone. These data indicate that prednisolone dose-dependently and differentially influences the systemic activation of different host response pathways during human endotoxemia.  相似文献   
994.
Compelling evidence has now demonstrated that IL-17-producing CD4 cells (Th17) are a major contributor to autoimmune pathogenesis, whereas CD4+CD25+ T regulatory cells (Treg) play a major role in suppression of autoimmunity. Differentiation of proinflammatory Th17 and immunosuppressive Treg from naive CD4 cells is reciprocally related and contingent upon the cytokine environment. We and others have reported that in vivo administration of pertussis toxin (PTx) reduces the number and function of mouse Treg. In this study, we have shown that supernatants from PTx-treated mouse splenic cells, which contained IL-6 and other proinflammatory cytokines, but not PTx itself, overcame the inhibition of proliferation seen in cocultures of Treg and CD4+CD25- T effector cells. This stimulatory effect could be mimicked by individual inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha. The combination of these cytokines synergistically stimulated the proliferation of CD4+CD25- T effector cells despite the presence of Treg with a concomitant reduction in the percentage of FoxP3+ cells and generation of IL-17-expressing cells. PTx generated Th17 cells, while inhibiting the differentiation of FoxP+ cells, from naive CD4 cells when cocultured with bone marrow-derived dendritic cells from wild-type mice, but not from IL-6-/- mice. In vivo treatment with PTx induced IL-17-secreting cells in wild-type mice, but not in IL-6-/- mice. Thus, in addition to inhibiting the development of Treg, the immunoadjuvant activity of PTx can be attributable to the generation of IL-6-dependent IL-17-producing CD4 cells.  相似文献   
995.
996.
997.

Background  

High-Density Lipoprotein (HDL), one of the main plasma lipoproteins, serves as a docking station for proteins involved in inflammation, coagulation, and lipid metabolism.  相似文献   
998.
999.
Colonization dynamics may strongly influence within and among population genetic variation and evolutionary potential of populations. We here analyze the genetic structure during the first three years of 12 cyclical parthenogenetic Daphnia populations in newly created pond habitats. One to three genotypes were observed to colonize the populations, indicating a limited number of founders. Pronounced changes in genetic structure were associated with hatching of sexual dormant eggs after a period of absence of the newly founded populations from the active community. Despite rapid colonization, genetic differentiation among populations was fairly high with limited decay over time, suggesting long-lasting founder effects. After initial colonization, no new alleles were observed in any of the populations, and our analyses suggests that this reflects reduced establishment success of later arrivals. Rare alleles increased in frequency, which likely is the result of inbreeding depression in selfed offspring of initially abundant clones, providing a fitness advantage to the sexual offspring of initially rare clones.  相似文献   
1000.
Most of the classical physiological effects of the octapeptide angiotensin II (AngII) are produced by activating the AT1 receptor which belongs to the G-protein coupled receptor family (GPCR). Peptidic GPCRs may be functionally divided in three regions: (i) extracellular domains involved in ligand binding; (ii) intracellular domains implicated in agonist-induced coupling to G protein and (iii) seven transmembrane domains (TM) involved in signal transduction. The TM regions of such receptors have peculiar characteristics such as the presence of proline residues. In this project we aimed to investigate the participation of two highly conserved proline residues (Pro82 and Pro162), located in TM II and TM IV, respectively, in AT1 receptor signal transduction. Both mutations did not cause major alterations in AngII affinity. Functional assays indicated that the P162A mutant did not influence the signal transduction. On the other hand, a potent deleterious effect of P82A mutation on signal transduction was observed. We believe that the Pro82 residue is crucial to signal transduction, although it is not possible to say yet if this is due to a direct participation or if due to a structural rearrangement of TM II. In this last hypothesis, the removal of proline residue might be correlated to a removal of a kink, which in turn can be involved in the correct positioning of residues involved in signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号