首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1941篇
  免费   132篇
  2024年   4篇
  2023年   6篇
  2022年   26篇
  2021年   31篇
  2020年   16篇
  2019年   27篇
  2018年   54篇
  2017年   44篇
  2016年   65篇
  2015年   104篇
  2014年   122篇
  2013年   149篇
  2012年   176篇
  2011年   127篇
  2010年   106篇
  2009年   90篇
  2008年   145篇
  2007年   139篇
  2006年   99篇
  2005年   96篇
  2004年   97篇
  2003年   85篇
  2002年   73篇
  2001年   27篇
  2000年   36篇
  1999年   24篇
  1998年   15篇
  1997年   12篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1985年   2篇
  1984年   4篇
  1980年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有2073条查询结果,搜索用时 15 毫秒
181.
Shim J  Mackerell AD 《MedChemComm》2011,2(5):356-370
A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.  相似文献   
182.
Park BS  Jin SH  Park JJ  Park JW  Namgoong IS  Kim YI  Lee BJ  Kim JG 《PloS one》2011,6(1):e15981

Background/Objective

Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and hypoactivity.

Methodology

Rats were intracerebroventricularly (ICV) injected with visfatin, and changes in food intake, body weight, body temperature and locomotor activity were monitored. Real-time PCR was applied to determine the expressions of pro-inflammatory cytokines, proopiomelanocortin (POMC) and prostaglandin-synthesizing enzymes in their brain. To determine the roles of cyclooxygenase (COX) and melanocortin in the visfatin action, rats were ICV-injected with visfatin with or without SHU9119, a melanocortin receptor antagonist, or indomethacin, a COX inhibitor, and their sickness behaviors were evaluated.

Principal Findings

Administration of visfatin decreased food intake, body weight and locomotor activity and increased body temperature. Visfatin evoked significant increases in the levels of pro-inflammatory cytokines, prostaglandin-synthesizing enzymes and POMC, an anorexigenic neuropeptide. Indomethacin attenuated the effects of visfatin on hyperthermia and hypoactivity, but not anorexia. Further, SHU9119 blocked visfatin-induced anorexia but did not affect hyperthermia or hypoactivity.

Conclusions

Visfatin induced sickness responses via regulation of COX and the melanocortin pathway in the brain.  相似文献   
183.
This study presents a special, economically valuable, unprecedented eco-friendly green process for the synthesis of silver nanoparticles. The silver nanoparticles were obtained from a waste material with oil palm biosolid extract as the reducing agent. The use of the oil palm biosolid extract for the nanoparticle synthesis offers the benefit of amenability for large-scale production. An aqueous solution of silver (Ag(+) ) ions was treated with the oil palm biosolid extract for the formation of Ag nanoparticles. The nanometallic dispersion was characterized by surface plasmon absorbance measuring 428 nm. Transmission electron microscopy showed the formation of silver nanoparticles in the range of 5-50 nm. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction analysis of the freeze-dried powder confirmed the formation of metallic silver nanoparticles. Moreover, Fourier Transform Infrared Spectroscopy provided evidence of phenolics or proteins as the biomolecules that were likely responsible for the reduction and capping agent, which helps to increase the stability of the synthesized silver nanoparticles. In addition, we have optimized the production with various parameters.  相似文献   
184.
Kim SN  Doo AR  Park JY  Bae H  Chae Y  Shim I  Lee H  Moon W  Lee H  Park HJ 《PloS one》2011,6(11):e27566
Parkinson's disease (PD) is caused by the selective loss of dopaminergic neurons in the substantia nigra (SN) and the depletion of striatal dopamine (DA). Acupuncture, as an alternative therapy for PD, has beneficial effects in both PD patients and PD animal models, although the underlying mechanisms therein remain uncertain. The present study investigated whether acupuncture treatment affected dopamine neurotransmission in a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that acupuncture treatment at acupoint GB34 improved motor function with accompanying dopaminergic neuron protection against MPTP but did not restore striatal dopamine depletion. Instead, acupuncture treatment increased dopamine release that in turn, may lead to the enhancement of dopamine availability in the synaptic cleft. Moreover, acupuncture treatment mitigated MPTP-induced abnormal postsynaptic changes, suggesting that acupuncture treatment may increase postsynaptic dopamine neurotransmission and facilitate the normalization of basal ganglia activity. These results suggest that the acupuncture-induced enhancement of synaptic dopamine availability may play a critical role in motor function improvement against MPTP.  相似文献   
185.
Repair of chromosome double-strand breaks (DSBs) is central to cell survival and genome integrity. Nonhomologous end joining (NHEJ) is the major cellular repair pathway that eliminates chromosome DSBs. Here we report our genetic screen that identified Rsc8 and Rsc30, subunits of the Saccharomyces cerevisiae chromatin remodeling complex RSC, as novel NHEJ factors. Deletion of RSC30 gene or the C-terminal truncation of RSC8 impairs NHEJ of a chromosome DSB created by HO endonuclease in vivo. rsc30Delta maintains a robust level of homologous recombination and the damage-induced cell cycle checkpoints. By chromatin immunoprecipitation, we show recruitment of RSC to a chromosome DSB with kinetics congruent with its involvement in NHEJ. Recruitment of RSC to a DSB depends on Mre11, Rsc30, and yKu70 proteins. Rsc1p and Rsc2p, two other RSC subunits, physically interact with yKu80p and Mre11p. The interaction of Rsc1p with Mre11p appears to be vital for survival from genotoxic stress. These results suggest that chromatin remodeling by RSC is important for NHEJ.  相似文献   
186.
Pin1 binds mitotically phosphorylated Thr231–Pro232 and Thr212–Pro213 sites on tau, and a Pin1 deficiency in mice leads to tau hyperphosphorylation. The aim of this study was to determine if the dephosphorylation or inhibition of tau and GSK3β phosphorylation induces the Pin1 phosphorylation. To test this, human SK-N-MC cells were stably transfected with a fusion gene containing neuron-specific enolase (NSE)-controlled APPsw gene(NSE/APPsw), to induce Aβ-42. The stable transfectants were then transiently transfected with NSE/Splice, lacking human tau (NSE/Splice), or NSE/hTau, containing human tau, into the cells. The NSE/Splice- and NSE/hTau-cells were then treated with lithium. We concluded that (i) there was more C99-β APP accumulation than C83-βAPP in APPsw-tansfectant and thereby promoted Aβ-42 production in transfectants. (ii) the inhibition of tau and GSK3β phosphorylations correlated with increase in Pin1 activation in NSE/hTau- cells. Thus, these observations suggest that Pin1 might have an inhibitive role in phosphorylating tau and GSK3β for protecting against Alzheimer’s disease.  相似文献   
187.
Global reduction of DNA methylation, a part of genome reprogramming processes, occurs in a gradual manner until before implantation and is recognized as a conserved process in mammals. Here, we reported that in bovine, satellite regions exhibited varied patterns of methylation changes when one-cell egg advanced to the blastocyst; a maintenance methylation was observed in satellite I sequences, a decrease in alpha satellites, and an increase in satellite II regions. Cloned embryos exhibited similar changes for DNA methylation in the satellite I and alpha. We also observed that the satellite I and alpha sequences were methylated more in inner cell mass region of the blastocyst whereas the satellite II showed selective demethylation in this region. Together, these findings point that individual satellite sequences carry their own methylation patterns under the pressure of global demethylation, suggesting that local methylation control system acts on the satellite regions in early bovine embryos.  相似文献   
188.
We have synthesized 3,4-dihydroquinazoline derivatives for the potent and selective T-type Ca(2+) channel blockers and evaluated for their inhibitory activities against two subtypes T-type Ca(2+) channels and N-type Ca(2+) channels. Among them, 5b (KYS05044, IC(50)=0.56+/-0.10 microM) was identified as potent T-type Ca(2+) channel blocker with in vitro selectivity profile at meaningful level (T/N-type, SI=>100).  相似文献   
189.
A series of formylchromone derivatives were synthesized as PTP1B inhibitors and some of them were potent against PTP1B with IC50 values as low as 1.0 microM. They exhibited remarkable selectivity for PTP1B over other human PTPases. Kinetic studies revealed that formylchromone derivatives are irreversible and active site-directed inhibitors. Molecular modeling study identified the orientation of the inhibitor bound at the active site of PTP1B.  相似文献   
190.
The immunosuppressant FK-506 binding protein 38 (FKBP38) is localized at the mitochondrial membrane and appears to play an important role in apoptosis. Recent reports about the potential functions of FKBP38 in apoptosis appear to be controversial. To further understand the biological function of FKBP38, here, we studied its molecular characteristics and a potential regulatory role on the anti-apoptotic protein Bcl-2. Our results suggest that FKBP38 appears to show chaperone activities in the citrate synthase aggregation assays during thermal denaturation and affect solubility of Bcl-2 when they are co-expressed. The FKBP family proteins bind the immunosuppressive drug FK-506 through the FK-506 binding domain and consequently inhibit the activity of calcineurin. In this study, from our NMR studies and calcineurin assays in vitro, we demonstrate that the N-terminal fragment of FKBP38 which contains the FK-506 binding domain does not bind FK-506 at molecular level. Lastly, to investigate the effect of FKBP38 on Bcl-2, we suppressed FKBP38 by RNA interference (RNAi) of FKBP38. Our results suggest that the suppression of FKBP38 appears to make Bcl-2 unstable or unprotected from degradation in an unknown mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号