首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3600篇
  免费   310篇
  国内免费   1篇
  2022年   20篇
  2021年   72篇
  2020年   38篇
  2019年   58篇
  2018年   69篇
  2017年   62篇
  2016年   103篇
  2015年   183篇
  2014年   202篇
  2013年   211篇
  2012年   258篇
  2011年   239篇
  2010年   184篇
  2009年   139篇
  2008年   207篇
  2007年   197篇
  2006年   190篇
  2005年   194篇
  2004年   160篇
  2003年   142篇
  2002年   133篇
  2001年   67篇
  2000年   89篇
  1999年   70篇
  1998年   44篇
  1997年   25篇
  1996年   27篇
  1995年   20篇
  1994年   19篇
  1993年   14篇
  1992年   49篇
  1991年   44篇
  1990年   34篇
  1989年   35篇
  1988年   31篇
  1987年   32篇
  1986年   21篇
  1985年   15篇
  1984年   16篇
  1983年   11篇
  1982年   10篇
  1981年   15篇
  1980年   13篇
  1979年   13篇
  1978年   13篇
  1977年   10篇
  1976年   12篇
  1975年   13篇
  1974年   12篇
  1972年   8篇
排序方式: 共有3911条查询结果,搜索用时 27 毫秒
971.
We have recently shown that phospholipase C-gamma (PLC-gamma) is activated by the central repeated units (CRUs) of the AHNAK protein in the presence of arachidonic acid. Here we demonstrate that four central repeated units (4 CRUs) of AHNAK act as a scaffolding motif networking PLC-gamma and PKC-alpha. Specifically, 4 CRUs of AHNAK bind and activate PKC-alpha, which in turn stimulates the release of arachidonic acid near where PLC-gamma1 is localized. Moreover, 4 CRUs of AHNAK interacted with PLC-gamma and the concerted action of 4 CRUs with arachidonic acid stimulated PLC-gamma activity. Stimulation of NIH3T3 cells expressing 4 CRUs of AHNAK with phorbol 12-myristate 13-acetate resulted in the increased generation of total inositol phosphates (IP(T)) and mobilization of the intracellular calcium. Phorbol 12-myristate 13-acetate-dependent generation of IP(T) was completely blocked in NIH3T3 cells depleted of PLC-gamma1 by RNA interference. Furthermore, bradykinin, which normally stimulated the PLC-beta isozyme resulting in the generation of a monophasic IP(T) within 30 s in NIH3T3 cells, led to a biphasic pattern for generation of IP(T) in NIH3T3 cells expressing 4 CRUs of AHNAK. The secondary activation of PLC is likely because of the scaffolding activity of AHNAK, which is consistent with the role of 4 CRUs as a molecular linker between PLC-gamma and PKC-alpha.  相似文献   
972.
Phospholipase C-gamma 1 (PLC-gamma 1) is phosphorylated on three tyrosine residues: Tyr-771, Tyr-783, and Tyr-1253. With the use of antibodies specific for each of these phosphorylation sites, we have now determined the kinetics and magnitude of phosphorylation at each site. Phosphorylation of Tyr-783, which is essential for lipase activation, was observed in all stimulated cell types examined. The extent of phosphorylation of Tyr-1253 was approximately 50 to 70% of that of Tyr-783 in cells stimulated with platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), but Tyr-1253 phosphorylation was not detected in B or T cell lines stimulated through B- and T-cell antigen receptors, respectively. Tyr-771 was phosphorylated only at a low level in all cells studied. In cells stimulated with PDGF, phosphorylation and dephosphorylation of Tyr-783 and of Tyr-1253 occurred with similar kinetics; the receptor kinase appeared to phosphorylate both sites, albeit with Tyr-783 favored over Tyr-1253, before the bound PLC-gamma 1 was released, and phosphorylation at the two sites occurred independently. PDGF and EGF induced similar levels of phosphorylation of Tyr-783 and of Tyr-1253 in a cell line that expressed receptors for both growth factors. However, only PDGF, not EGF, elicited substantial PLC activity, suggesting that Tyr-783 phosphorylation was not sufficient for enzyme activation. Finally, concurrent production of phosphatidylinositol 3,4,5-trisphosphate was found to contribute to the activation of phosphorylated PLC-gamma 1.  相似文献   
973.
974.
Human protein-tyrosine kinase-6 (PTK6, also known as breast tumor kinase (Brk)) is a member of the non-receptor protein-tyrosine kinase family and is expressed in two-thirds of all breast tumors. To understand the structural basis of PTK6 function, we have determined the solution structure and backbone dynamics of the PTK6-Src homology 2 (SH2) domain using multidimensional NMR spectroscopy. The solution structure clearly indicates that the SH2 domain of human PTK6 contains a consensus alpha/beta-fold and a Tyr(P) peptide binding surface, which are common to other SH2 domains. However, two of the alpha-helices (alphaA and alphaB) are located on opposite faces of the central beta-sheet. In addition, the topological arrangement of a central four-stranded antiparallel beta-sheet (strands betaA, betaB, betaC, and betaD) differs from that of other Src family members. Backbone dynamics and Tyr(P) peptide titration experiments revealed that the putative ligand binding sites of the PTK6-SH2 domain undergo distinctive internal motions when compared with other regions of the protein. Surface plasmon resonance analysis showed that the Tyr(P) peptide had a dissociation constant of about 60 microm, which is substantially weaker binding than previously reported for Src family members. The solution structure together with data from the ligand binding mode of PTK6-SH2 provides insight into the molecular basis of the autoinhibitory role of PTK6.  相似文献   
975.
Tumor necrosis factor-alpha (TNF-alpha) induces the activation of all three types of mitogen-activated protein kinase (MAPK): c-Jun NH(2)-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). This cytokine also induces the production of several types of reactive oxygen species, including H(2)O(2). With the use both of HeLa cells expressing wild-type or dominant negative forms of the cytosolic peroxidase peroxiredoxin II and of mouse embryonic fibroblasts deficient in this protein, we evaluated the roles of H(2)O(2) in the activation of MAPKs by TNF-alpha. In vitro kinase assays as well as immunoblot analysis with antibodies specific for activated MAPKs indicated that H(2)O(2) produced in response to TNF-alpha potentiates the activation of JNK and p38 induced by this cytokine but inhibits that of ERK. Our results also suggest that cytosolic peroxiredoxins are important regulators of TNF signaling pathways.  相似文献   
976.
In WEHI-231, a representative immature B cell line, Ca(2+) entry is paradoxically augmented by treatment with 2-aminoethoxydiphenyl borate (2-APB), a blocker of inositol 1,4,5-trisphosphate receptor and of nonselective cation channels (Nam, J. H., Yun, S. S., Kim, T. J., Uhm, D.-Y., and Kim, S. J. (2003) FEBS Lett. 535, 113-118). The initial goal of the present study was to elucidate the effects of 2-APB on membrane currents, which revealed the presence of novel K(+) channels in WEHI-231 cells. Under whole-cell patch clamp conditions, 2-APB induced background K(+) current (I(K,bg)) and hyperpolarization in WEHI-231 cells. Lowering of intracellular MgATP also induced the I(K,bg). The I(K,bg) was blocked by micromolar concentrations of quinidine but not by tetraethylammonium. In a single channel study, two types of voltage-independent K(+) channels were found with large (346 picosiemens) and medium conductance (112 picosiemens), named BK(bg) and MK(bg), respectively. The excision of membrane patches (inside-out (i-o) patches) greatly increased the P(o) of BK(bg). In i-o patches, cytoplasmic MgATP (IC(50) = 0.18 mm) decreased the BK(bg) activity, although non-hydrolyzable adenosine 5'-(beta,gamma-imino)triphosphate had no effect. A pretreatment with Al(3+) or wortmannin (50 microm) blocked the inhibitory effects of MgATP. A direct application of phosphoinositide 4,5-bisphosphate (10 microm) inhibited the BK(bg) activity. Meanwhile, the activity of MK(bg) was unaffected by MgATP. In cell-attached conditions, the BK(bg) activity was largely increased by 2-APB. In i-o patches, however, the MgATP-induced inhibition of BK(bg) was weakly reversed by the addition of 2-APB. In summary, WEHI-231 cells express the unique background K(+) channels. The BK(bg)s are inhibited by membrane-delimited elevation of phosphoinositide 4,5-bisphosphate. The activation of BK(bg) would hyperpolarize the membrane, which augments the calcium influx in WEHI-231 cells.  相似文献   
977.
HP (2-20) is a peptide derived from the N-terminus of Helicobacter pylori ribosomal protein L1 that has been shown to have antimicrobial activity against various species of bacteria. When we tested the effects of HP (2-20), we found that this peptide displayed strong activity against pathogens from a patient with gallstones, but it did not have hemolytic activity against human erythrocytes. We also found that HP (2-20) had potent activity against cefazolin sodium-resistant bacterial cell lines, and that HP (2-20) and cefazolin sodium had synergistic effects against cell lines resistant to the latter. To investigate the mechanism of action of HP (2-20), we performed fluorescence activated flow cytometry using pathogens from the patient with gallstones. As determined by propidium iodide (PI) staining, pathogenic bacteria treated with HP (2-20) showed higher fluorescence intensity than untreated cells, similar to melittin-treated cells, and that HP (2-20) acted in an energy- and salt-dependent manner. Scanning electron microscopy showed that HP (2-20) caused significant morphological alterations in the cell surface of pathogens from the patient with gallstones. By determining their 16S rDNA sequences, we found that both the pathogens from the patient with gallstones and the cefazolin sodium-resistant cell lines showed 100% homology with sequences from Pseudomonas aeruginosa. Taken together, these results suggest that HP (2-20) has antibiotic activity and that it may be used as a lead drug for the treatment of acquired pathogens from patients with gallstones and antibiotic-resistant cell lines.  相似文献   
978.
Bacterial chemotaxis receptors are posttranslationally modified by carboxyl methylation of specific glutamate residues within their cytoplasmic domains. This highly regulated, reversible modification counterbalances the signaling effects of ligand binding and contributes to adaptation. On the basis of the crystal structure of the gamma-glutamyl methyltransferase CheR, we have postulated that positively charged residues in helix alpha2 in the N-terminal domain of the enzyme may be complementary to the negatively charged methylation region of the methyltransferase substrates, the bacterial chemotaxis receptors. Several altered CheR proteins, in which positively charged arginine or lysine residues were substituted with alanines, were constructed and assayed for their methylation activities toward wild-type receptor and a series of receptor variants containing different glutamates available for methylation. One of the CheR mutant proteins (Arg53Ala) showed significantly lower activity toward all receptor constructs, suggesting that Arg53 may play a general role in catalysis of methyl transfer. The rest of the mutant proteins exhibited different patterns of relative methylation rates toward different receptor substrates, indicating specificity, probably through interaction of CheR with the receptor at sites distal to the specific site of methylation. The findings imply complementarity between positively charged residues of the alpha2 helix of CheR and the negatively charged glutamates of the receptor. It is likely that this complementarity is involved in discriminating different methylation states of the receptors.  相似文献   
979.
980.
Kim J  Hong JH 《Carbohydrate research》2003,338(8):705-710
A series of 2'-deoxyapio-L-furanosyl pyrimidine nucleosides were efficiently synthesized starting from D-lactose via condensation of lactitor acetates with silylated pyrimidine bases under standard Vorbrüggen conditions. Their structures were determined by 1D and 2D NMR spectroscopy. All the synthesized nucleosides were assayed against several viruses such as HIV-1, HBV, HSV-1, HSV-2, and HCMV. However, none of these compounds had any significant antiviral activity at concentrations up to 100 microM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号