首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3611篇
  免费   313篇
  国内免费   1篇
  3925篇
  2022年   34篇
  2021年   72篇
  2020年   38篇
  2019年   58篇
  2018年   69篇
  2017年   62篇
  2016年   103篇
  2015年   183篇
  2014年   202篇
  2013年   211篇
  2012年   258篇
  2011年   239篇
  2010年   184篇
  2009年   139篇
  2008年   207篇
  2007年   197篇
  2006年   190篇
  2005年   194篇
  2004年   160篇
  2003年   142篇
  2002年   133篇
  2001年   67篇
  2000年   89篇
  1999年   70篇
  1998年   44篇
  1997年   25篇
  1996年   27篇
  1995年   20篇
  1994年   19篇
  1993年   14篇
  1992年   49篇
  1991年   44篇
  1990年   34篇
  1989年   35篇
  1988年   31篇
  1987年   32篇
  1986年   21篇
  1985年   15篇
  1984年   16篇
  1983年   11篇
  1982年   10篇
  1981年   15篇
  1980年   13篇
  1979年   13篇
  1978年   13篇
  1977年   10篇
  1976年   12篇
  1975年   13篇
  1974年   12篇
  1972年   8篇
排序方式: 共有3925条查询结果,搜索用时 250 毫秒
81.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
82.
Lee  Changsu  Song  Hye Seon  Lee  Se Hee  Kim  Joon Yong  Rhee  Jin-Kyu  Roh  Seong Woon 《Archives of microbiology》2021,203(1):261-268
Archives of Microbiology - Extremely halophilic archaea (haloarchaea) belonging to the phylum Euryarchaeota have been found in high-salinity environments. In this study, Halarchaeum sp. CBA1220,...  相似文献   
83.

Understanding the timescales that shape spatial genetic structure is pivotal to ascertain the impact of habitat fragmentation on the genetic diversity and reproductive viability of long-lived plant populations. Combining genetic and ecological information with current and past fragmentation conditions allows the identification of the main drivers important in shaping population structure and declines in reproduction, which is crucial for informing conservation strategies. Using historic aerial photographs, we defined the past fragmentation conditions for the shrub Conospermum undulatum, a species now completely embedded in an urban area. We explored the impact of current and past conditions on its genetic layout and assessed the effects of genetic and environmental factors on its reproduction. The historically high structural connectivity was evident in the genetics of the species. Despite the current intense fragmentation, we found similar levels of genetic diversity across populations and a weak spatial genetic structure. Historical connectivity was negatively associated with genetic differentiation among populations and positively related to within-population genetic diversity. Variation partitioning of reproductive performance explained?~?66% of the variance, showing significant influences for genetic (9%), environmental (15%), and combined (42%) fractions. Our study highlights the importance of considering the historical habitat dynamics when investigating fragmentation consequences in long-lived plants. A detailed characterization of fragmentation from 1953 has shown how low levels of genetic fixation are due to extensive gene flow through the non-fragmented landscape. Moreover, knowledge of the relationships between genetic and environmental variation and reproduction can help to implement effective conservation strategies, particularly in highly dynamic landscapes.

  相似文献   
84.
Kim  Juseok  Kim  Joon Yong  Song  Hye Seon  Kim  Yeon Bee  Whon  Tae Woong  Ahn  Seung Woo  Lee  Se Hee  Yoo  SeungRan  Kim  Yu Jin  Myoung  Jinjong  Choi  Yoon-E  Son  Hong-Seok  Roh  Seong Woon 《Antonie van Leeuwenhoek》2021,114(5):507-513

Strain CBA3638T was isolated from the Geum River sediment, Republic of Korea. The cells of strain CBA3638T were Gram-stain-positive, strictly anaerobic, rod-shaped, and 0.5–1.0 μm wide, and 4.0–4.5 μm long. Optimal growth occurred at 37 °C, pH 7.0, and 1.0% (w/v) NaCl. Based on the 16S rRNA gene sequence, the phylogenetic analysis showed that strain CBA3638T belongs to the genus Anaerocolumna in the family Lachnospiraceae, and is most closely related to Anaerocolumna cellulosilytica (94.6–95.0%). The DDH value with A. cellulosilytica SN021T showed 15.0% relatedness. The genome of strain CBA3638T consisted of one circular chromosome that is 5,500,435 bp long with a 36.7 mol% G?+?C content. The genome contained seven 16S-5S-23S rRNA operons and one antibiotic resistance-related transporter gene (mefA). Quinones were not detected. The predominant cellular fatty acids were C16:0 and C14:0 and the polar lipids were diphosphatidylglycerol, phosphatidylcholine, and uncharacterised polar lipids. Based on the polyphasic taxonomic analysis, we propose strain CBA3638T as a novel species in the genus Anaerocolumna, with the name Anaerocolumna sedimenticola sp. nov. The type strain is CBA3638T (=?KACC 21652T?=?DSM 110663T).

  相似文献   
85.
Kyu Rhee 《EMBO reports》2013,14(11):949-950
Two recent studies in PNAS and Nat Chem Biol highlight the power of modern mass-spectrometry techniques for enzyme discovery applied to microbiology. In so doing, they have uncovered new potential targets for the treatment of tuberculosis.Proc Natl Acad Sci USA (2013) 110 28, 11320–11325 doi: 10.1073/pnas.1221597110Nat Chem Biol (2013). doi:10.1038/nchembio.1355. Advance online publication 29 September 2013Many have come to regard metabolism as a well-understood housekeeping activity of all cells, functionally compartmentalized away from other biological processes. However, growing reports of unexpected links between a diverse range of disease states and specific metabolic enzymes or pathways have begun to challenge this view. In doing so, such discoveries have exposed more glaring, and neglected, deficiencies in our understanding of cellular metabolism, triggering a broad resurgence of interest in metabolism.“Metabolomics […] offers a global window into the biochemical state of a cell or organism…”Metabolomics is the newest of the systems-level disciplines and seeks to reveal the physiological state of a given cell or organism through the global and unbiased study of its small-molecule metabolites [1]. Metabolites are the final products of enzymes and enzyme networks, the substrates and products of which often cannot be deduced from genetic information and the levels of which reflect the integrated product of the genome, proteome and environment [2]. Metabolomics thus offers a global window into the biochemical state of a cell or organism, made experimentally possible by the unprecedented discriminatory power and sensitivity of modern mass-spectrometry-based technologies (Fig 1). Two recent reports from the Carvalho and Neyrolles groups, published recently in Proceedings of the National Academy of Science USA and Nature Chemical Biology [3,4], exemplify the rapidly growing impact of metabolomics-based approaches on tuberculosis research.Open in a separate windowFigure 1Modern mass spectrometry illuminates bacterial metabolism. A comparison of activity-based metabolomic profiling with classic metabolic tracing. See the text for details.Within the field of infectious diseases, the deficiencies in our understanding of microbial metabolism have emerged most prominently in the area of tuberculosis research. Despite the development of the first chemotherapies more than 50 years ago, tuberculosis remains the leading bacterial cause of death worldwide, due in part to a failure to keep pace with the emergence of drug resistance [5]. The causes of this shortfall are multifactorial. However, a key contributing factor is our incomplete understanding of the metabolic properties of Mycobacterium tuberculosis (Mtb), its aetiological agent. Unlike most bacterial pathogens, Mtb infects humans as its only known host and reservoir, within whom it resides largely isolated from other microbes. Mtb has thus evolved its metabolism to serve interdependent physiological and pathogenic roles. Yet, more than a century after Koch''s initial discovery of Mtb and 15 years after the first publication of its genome sequence, knowledge of Mtb''s metabolic network remains surprisingly incomplete [6,7,8].“…tuberculosis remains the leading bacterial cause of death worldwide…”As for almost all sequenced microbial genomes, homology-based in silico approaches have failed to suggest a function for nearly 40% of Mtb genes that, presumably, include a significant number of orphan enzyme activities for which no gene has been ascribed [8]. Such approaches have further neglected the impact of evolutionary selection and its ability to dissociate sequence conservation from biochemical activity and physiological function, in order to help optimize the fitness of a given organism within its specific niche. For Mtb, such genes and enzymes represent an especially promising and biologically selective, but untapped, source of potential drug targets.In the study from the Carvalho group, successful application of a recently developed metabolomics assay—known as activity-based metabolomic profiling (ABMP)—allowed the authors to reassign a putatively annotated nucleotide phosphatase (Rv1692) as a D,L-glycerol 3-phosphate phosphatase [3,9]. ABMP was specifically developed to identify enzymatic activities for genes of unknown function by leveraging the analytical discriminatory power of liquid-chromatography-coupled high-resolution mass spectrometry (LC-MS) to analyse the impact of a recombinant enzyme and potential co-factors on a highly concentrated, small-molecule extract derived from the homologous organism (Fig 1). By monitoring for the matched time and enzyme-dependent depletion and accumulation of putative substrates and products, this assay enables the discovery of catalytic activities—rather than simple binding—by using the cellular metabolome as arguably the most physiological chemical library of potential substrates that can be tested, in a label and synthesis-free manner. Moreover, candidate activities assigned by this method can be confirmed by using independent biochemical approaches—such as reconstitution with purified components—and genetic techniques—such as wild-type and genetic knockout, knockdown or overexpression strains. In reassigning Rv1692 as a glycerol phosphate phosphatase, rather than a nucleotide phosphatase, Carvalho and colleagues demonstrate the potential of ABMP to overcome the biochemical challenge of assigning substrate specificity to a member of a large enzyme superfamily—in this case, the haloacid dehydrogenase superfamily. But, perhaps more significantly, they also direct new biological attention to the largely neglected area of Mtb membrane homeostasis, in which Rv1692 might play an important role in glycerophospholipid recycling and catabolism.“…knowledge of Mtb''s metabolic network remains surprisingly incomplete”Neyrolles and colleagues make use of the same metabolomics platform to perform metabolite-tracing studies by using stable-isotope-labelled precursors, which led them to reassign a putatively annotated asparagine transporter (AnsP1) as an aspartate transporter. AnsP1 bears 55% sequence identity and 70% similarity to an orthologue in Salmonella that belongs to the amino acid transporter family 2.A.3.1, whereas aspartate transporters are typically members of the dicarboxylate amino acid:cation symporter family 2.A.23 [4]. This study demonstrates the ability of metabolomic platforms to not only characterize the activity of a given protein within its natural physiological milieu, but also revive classical experimental methods by using modern technologies. The availability of stable (non-radioactive) isotopically labelled precursors has now made it possible to resolve their specific metabolic fates. In this case, such an approach revealed that Mtb can use aspartate as both a carbon and nitrogen source, after its uptake through AnsP1. Looking beyond the specific biochemical assignment of AnsP1 as an aspartate—rather than asparagine—transporter, this study illustrates the potential impact of such discoveries on downstream paths of investigation. In this case, the remarkable application of high-resolution dynamic secondary ion mass spectroscopy to provide the first direct biochemical images of the nutritional environment of the Mtb-infected phagosome.New technologies are often developed in the context of specific needs. However, their impact is usually not realized until extended beyond such contexts, sometimes resulting in major paradigm shifts. The above examples highlight just two emerging possibilities of how metabolomics technologies can be extended beyond the context of global comparisons and provide unique biological insights. To the extent that the analytical power of these platforms can be adapted to other functional approaches, metabolomics promises to pay handsome biochemical and physiological dividends.  相似文献   
86.
The discovery of threosyl phosphonate nucleoside (PMDTA, EC50 = 2.53 μM) as a potent anti-HIV agent has led to the synthesis and biological evaluation of 5 ′-deoxyversions of threosyl phosphonate nucleosides from 1,4-dihydroxy-2-butene. The synthesized nucleoside phosphonic acid analogues 14 and 19 were tested for anti-HIV activity as well as cytotoxicity. The adenine analogue 14 exhibits moderate in vitro anti-HIV-1 activity (EC50 = 12.6 μM).  相似文献   
87.
Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37–73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.  相似文献   
88.
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1–deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.  相似文献   
89.
It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response.  相似文献   
90.

Background and Aims

Surveillance is an integral part of the colorectal cancer (CRC) screening process. We aimed to investigate inter-physician variation in follow-up procedures after screening colonoscopy in an opportunistic CRC screening program.

Methods

A historical cohort study in the German statutory health insurance system was conducted. 55,301 individuals who underwent screening colonoscopy in 2006 in Bavaria, Germany, and who were not diagnosed with CRC were included. Utilization of follow-up colonoscopies performed by the same physician (328 physicians overall) within 3 years was ascertained. Mixed effects logistic regression modelling was used to assess the effect of physicians and other potential predictors (screening result, age group, and sex) on re-utilization of colonoscopy. Physicians were grouped into quintiles according to individual effects estimated in a preliminary model. Predicted probabilities of follow-up colonoscopy by screening result and physician group were calculated.

Results

The observed rate of follow-up colonoscopy was 6.2% (95% confidence interval: 5.9-6.4%), 18.6% (17.8-19.4%), and 37.0% (35.5-38.4%) after negative colonoscopy, low-risk adenoma and high-risk adenoma detection, respectively. All considered predictors were statistically significantly associated with follow-up colonoscopy. The predicted probabilities of follow-up colonoscopy ranged from 1.7% (1.4-2.0%) to 11.0% (10.2-11.7%), from 7.3% (6.2-8.5%) to 35.1% (32.6-37.7%), and from 17.9% (15.5-20.6%) to 56.9% (53.5-60.3%) in the 1st quintile (lowest rates of follow-up) and 5th quintile (highest rates of follow-up) of physicians after negative colonoscopy, low-risk adenoma and high-risk adenoma detection, respectively.

Conclusions

This study suggests substantial inter-physician variation in follow-up habits after screening colonoscopy. Interventions, including organizational changes in CRC screening should be considered to reduce this variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号